Näytä suppeat kuvailutiedot

dc.contributor.authorWang, Xiaoshuang
dc.contributor.authorZhang, Guanghui
dc.contributor.authorWang, Ying
dc.contributor.authorYang, Lin
dc.contributor.authorLiang, Zhanhua
dc.contributor.authorCong, Fengyu
dc.date.accessioned2022-12-20T10:02:55Z
dc.date.available2022-12-20T10:02:55Z
dc.date.issued2022
dc.identifier.citationWang, X., Zhang, G., Wang, Y., Yang, L., Liang, Z., & Cong, F. (2022). One-Dimensional Convolutional Neural Networks Combined with Channel Selection Strategy for Seizure Prediction Using Long-Term Intracranial EEG. <i>International Journal of Neural Systems</i>, <i>32</i>(2), Article 2150048. <a href="https://doi.org/10.1142/s0129065721500489" target="_blank">https://doi.org/10.1142/s0129065721500489</a>
dc.identifier.otherCONVID_101537583
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/84523
dc.description.abstractSeizure prediction using intracranial electroencephalogram (iEEG) has attracted an increasing attention during recent years. iEEG signals are commonly recorded in the form of multiple channels. Many previous studies generally used the iEEG signals of all channels to predict seizures, ignoring the consideration of channel selection. In this study, a method of one-dimensional convolutional neural networks (1D-CNN) combined with channel selection strategy was proposed for seizure prediction. First, we used 30-s sliding windows to segment the raw iEEG signals. Then, the 30-s iEEG segments, which were in three channel forms (single channel, channels only from seizure onset or free zone and all channels from seizure onset and free zones), were used as the inputs of 1D-CNN for classification, and the patient-specific model was trained. Finally, the channel form with the best classification was selected for each patient. The proposed method was evaluated on the Freiburg Hospital iEEG dataset. In the situation of seizure occurrence period (SOP) of 30min and seizure prediction horizon (SPH) of 5min, 98.60% accuracy, 98.85% sensitivity and 0.01/h false prediction rate (FPR) were achieved. In the situation of SOP of 60min and SPH of 5min, 98.32% accuracy, 98.48% sensitivity and 0.01/h FPR were attained. Compared with the many existing methods using the same iEEG dataset, our method showed a better performance.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherWorld Scientific
dc.relation.ispartofseriesInternational Journal of Neural Systems
dc.rightsIn Copyright
dc.subject.otherseizure prediction
dc.subject.otherintracranial electroencephalogram (iEEG)
dc.subject.otherconvolutional neural network (CNN)
dc.subject.otherchannel selection
dc.titleOne-Dimensional Convolutional Neural Networks Combined with Channel Selection Strategy for Seizure Prediction Using Long-Term Intracranial EEG
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202212205772
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTekniikkafi
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingfi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineEngineeringen
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingen
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0129-0657
dc.relation.numberinseries2
dc.relation.volume32
dc.type.versionacceptedVersion
dc.rights.copyright© World Scientific, 2022
dc.rights.accesslevelopenAccessfi
dc.subject.ysosignaalianalyysi
dc.subject.ysoepilepsia
dc.subject.ysosairauskohtaukset
dc.subject.ysosignaalinkäsittely
dc.subject.ysoneuroverkot
dc.subject.ysoEEG
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p26805
jyx.subject.urihttp://www.yso.fi/onto/yso/p9413
jyx.subject.urihttp://www.yso.fi/onto/yso/p19057
jyx.subject.urihttp://www.yso.fi/onto/yso/p12266
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
jyx.subject.urihttp://www.yso.fi/onto/yso/p3328
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1142/s0129065721500489
jyx.fundinginformationNational Natural Science Foundation of China (NSFC) China; China Scholarship Council (CSC) China
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright