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Seizure prediction using intracranial electroencephalogram (iEEG) has attracted an increasing attention

during recent years. iEEG signals are commonly recorded in the form of multiple channels. Many previous

studies generally used the iEEG signals of all channels to predict seizures, ignoring the consideration of

channel selection. In this study, a method of one dimensional convolutional neural networks (1D-CNN)

combined with channel selection strategy was proposed for seizure prediction. Firstly, we used 30-sec

sliding windows to segment the raw iEEG signals. Then, the 30-sec iEEG segments, which were in three

channel forms (single channel, channels only from seizure onset or free zone and all channels from seizure

onset and free zones), were used as the inputs of 1D-CNN for classification, and the patient-specific

model was trained. Finally, the channel form with the best classification was selected for each patient.

The proposed method was evaluated on the Freiburg Hospital iEEG dataset. In the situation of seizure

occurrence period (SOP) of 30 min and seizure prediction horizon (SPH) of 5 min, 98.60% accuracy,

98.85% sensitivity and 0.01/h false prediction rate (FPR) were achieved. In the situation of SOP of 60

min and SPH of 5 min, 98.32% accuracy, 98.48% sensitivity and 0.01/h FPR were attained. Compared

with the many existing methods using the same iEEG dataset, our method showed a better performance.

Keywords: Epilepsy; Seizure prediction; Intracranial electroencephalogram (iEEG); Convolutional neural
network (CNN); Channel selection.

1. Introduction

Epilepsy is a chronic neurological disease, which pre-

disposes a person to recurrent seizures. About 50

million people suffer from epilepsy, and 30% of them

are resistant to anti-epileptic drugs.1,2 Clinical refrac-

tory epilepsy is commonly associated with the risks
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of fainting, injury and death.3 Electroencephalogram

(EEG) has become a powerful technique in epilepsy

diagnosis,4–6 and many EEG-based methods, includ-

ing threshold analysis,7,8 Support Vector Machine

(SVM),9,10 k-Nearest Neighbor (KNN),11 Random

Forest (RF),12 Linear Classifier13 and deep learn-

ing,14–16 have been successfully applied for seizure

detection. However, seizure prediction using EEG

remains one of the main challenges. The accurate

prediction of seizures and timely interventions can

greatly reduce the suffering of epilepsy patients.

The previous EEG-based seizure prediction methods

mainly consisted of threshold analysis, conventional

machine learning and deep learning.

Firstly, the methods of linear or nonlinear fea-

tures combined with threshold analysis were applied

to the seizure prediction. Maiwald et al. used the dy-

namical similarity index as the nonlinear feature and

evaluated the approach on the Freiburg Hospital in-

tracranial electroencephalogram (iEEG) dataset.17A

sensitivity of 42% and a false prediction rate (FPR)

of less than 0.15/h were achieved.17 With the same

iEEG dataset, Winterhalder et al. combined phase

and lag synchronization measure to evaluate the

changes of iEEG synchronization and obtained a

result of 60% sensitivity and 0.15/h FPR.18 Based

on the combination of bivariate empirical mode de-

composition and Hilbert transformation, Zheng et

al. calculated the mean phase coherence from mul-

tiple iEEG channels. This method achieved a sen-

sitivity of more than 70% and a FPR of less than

0.15/h.19 Then, Eftekhar et al. combined symbol dy-

namics methodologies with an N-gram algorithm for

seizure prediction and obtained 90.95% sensitivity

and 0.06/h FPR.20 Aarabi et al. extracted correlation

dimension, correlation entropy, noise level, Lempel-

Ziv complexity, largest Lyapunov exponent and non-

linear interdependence as the features, and the rule-

based decision making technique was used for clas-

sification. The proposed method obtained a better

result of 92.9% sensitivity and 0.096/h FPR in the

situation of seizure occurrence periods (SOP) of 50

min and seizure prediction horizon (SPH) of 10 s.21

Although the performances of the threshold analysis

methods have been improved to some extent, there

is still room for the further improvement.

Secondly, the conventional machine learning

methods were also used for seizure prediction. Park

et al. used the SVM to classify the feature samples

extracted from nine frequency bands of iEEG signals.

The method was evaluated on the Freiburg Hospital

iEEG dataset, and a sensitivity of 97.5% and a FPR

of 0.27/h were achieved.22 Williamson et al. calcu-

lated the principal components from the eigenspec-

tra of space-delay correlation and covariance matrices

for feature extraction. The SVM finally predicted 71

out of 83 seizures (85.54% sensitivity) with a FPR of

0.03/h using the same iEEG dataset.23 Ozdemir et al.

used Hilbert-Huang transform for feature extraction

and Bayesian network for classification. A result of

96.55% sensitivity and 0.21/h FPR was obtained.24

Then, Parvez et al. extracted phase-match error, de-

viation and fluctuation as the features and used Least

Square-Support Vector Machine (LS-SVM) for classi-

fication. The method attained a result of 95.4% sen-

sitivity and 0.36/h FPR.25 Based on the analysis of

ictal rules on Poincaré plane for feature extraction,

Sharif et al. applied the SVM for classification and

achieved a sensitivity of 91.8% to 96.6% and a FPR

of 0.05/h to 0.08/h.26 Although the conventional ma-

chine learning methods were used in the seizure pre-

diction, the feature extraction and selection of iEEG

signals was a time-cosuming engineering, and it also

had the low generalization. Therefore, the feature en-

gineering techniques were commonly complex in the

analysis of iEEG signals for seizure prediction.

Recently, deep leaning techniques have shown ex-

cellent performances in image recognition,27,28 image

retrieval,29 multi-object tracking30,31 and foreground

detection,32,33 and iEEG-based deep learning tech-

niques have also been applied for seizure prediction.

Truong et al. used Short-Time Fourier Transform

(STFT) to attain the iEEG time-frequency input

maps and utilized Two Dimensional Convolutional

Neural Networks (2D-CNN) with three convolution

blocks for classification. Three datasets, the Freiburg

Hospital iEEG dataset,17 the CHB-MIT scalp elec-

troencephalogram (sEEG) dataset34 and the Amer-

ican Epilepsy Society Seizure Prediction Challenge

iEEG dataset,35 were evaluated with the proposed

method. This method finally achieved 81.4%, 81.2%

and 75% sensitivity and 0.06/h, 0.16/h and 0.21/h

FPR, respectively.36 Truong et al. also applied Gen-

erative Adversarial Networks (GAN) for the seizure

forecasting and attained the operating characteristic

curve (AUC) of 75.47 % using the Freiburg Hospital

iEEG dataset.37 Based on the same iEEG dataset,

Wang et al. used a 2D-CNN with three convolution
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iEEG

PreictalInterictal Ictal Postictal

Time

SPH SOP

Alarm

Fig. 1. The four stages of epileptic iEEG: interictal, preictal, ictal and postictal, and the definition of an accurate seizure
prediction. When an alarm rings, a seizure must occur after SPH and within SOP.

blocks to classify the channel-frequency input maps

that were obtained by using Directed Transfer Func-

tion (DTF). The method attained 90.8%sensitivity

and 0.08/h FPR.38 Daoud et al. used four deep learn-

ing models, including Multi-Layer Perceptron (MLP),

Deep Convolutional Neural Network (DCNN) + MLP,

DCNN + Bidirectional Long Short-Term Memory

and Deep convolutional Autoencoder (DCAE) + Bi-

LSTM, for the analysis of seizure prediction. The

DCNN + Bi-LSTM model and the DCAE + Bi-

LSTM model finally obtained the highest accuracy

of 99.6% and the lowest FPR of 0.004/h, but the

sEEG signals of only eight patients from the CHB-

MIT sEEG dataset were used.39

Although the many previous studies used the

iEEG to explore the prediction of seizures, most of

them used all channel iEEG signals, ignoring the con-

sideration of iEEG channel selection. Whether iEEG

signals of all channels are conducive to the seizure

prediction has not been studied well. iEEG signals

are commonly recorded in the form of multiple chan-

nels (or electrodes), and the electrodes usually record

iEEG signals from multiple zones of the brain, in-

cluding seizure onset zones and seizure free zones.

Therefore, the iEEG channel selection is needed and

significant for a better prediction of seizures. Based

on the above considerations, in this work, we explored

the seizure prediction with a iEEG channel selec-

tion strategy. Three channel cases (single channel,

channels only from seizure onset or free zone and all

channels from seizure onset and free zones) combined

with the corresponding One Dimensional Convolu-

tional Neural Networks (1D-CNN) were studied and

discussed. Then, the channel case with the best clas-

sification was finally selected for each patient. In the

seizure prediction, the time duration of iEEG signals

before seizure onset is needed to be defined as the

preictal period. After defining two different preictal

periods, the proposed method was evaluated on each

preictal period.

2. Materials and Methods

2.1. Data preparation

The Freiburg Hospital iEEG dataset (http://epilepsy.

uni-freiburg.de/) was used for the analysis of seizure

prediction in this work . The iEEG dataset consisted

of 21 patients, with a total of 87 seizures, 509 h of

interictal and 73 h of preictal or ictal iEEG signals.

Each patient contained at least 24 h of interictal and

50 min of preictal iEEG signals. The iEEG signals

were recorded with the sampling rate of 256 Hz, and

a bandpass filter between 0.5 and 120 Hz and a 50

Hz notch filter were used to eliminate the possible

noise.17 More details about this iEEG dataset were

described in [17].

In the seizure prediction, it is to explore the dis-

tinction between interictal stage and preictal stage

(as shown in Fig. 1). It means that the time durations

of SPH and SOP need to be defined. SOP is defined

as the period during which a seizure is expected to

occur. SPH is the period between the alarm and the

beginning of SOP.40 The SPH is also called the in-

tervention time.41 In real-world conditions, the time

duration of SPH should be long enough for potential

interventions to prevent seizure onset. In this work,

the time duration of SPH was set to 5 min,36,38,42,43

while we discussed two different durations of SOP,

namely 30 min and 60 min. According to the two

different durations of SOP, the final selected iEEG

signals and their details were summarized in Table 1.

http://epilepsy.uni-freiburg.de/
http://epilepsy.uni-freiburg.de/
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Table 1. The details of the selected iEEG signals for each patient

Patient Gender Age Interictal (h) #seizures (SOP = 30 min) #seizures (SOP = 60 min)+

1 f 15 24 4 3
2 m 38 24 3 –
3 m 14 24 5 4
4 f 26 24 5 3
5 f 16 24 5 2
6 f 31 24 3 –
7 f 42 24.6 3 3
8 f 32 24.2 2 2
9 m 44 23.9 5 3
10 m 47 24.5 5 5
11 f 10 24.1 4 3
12 f 42 24 4 3
13 f 22 24 2 2
14 f 41 23.9 4 3
15 m 31 24 4 3
16 f 50 24 5 5
17 m 28 24.1 5 5
18 f 25 24.9 5 5
19 f 28 24.4 4 3
20 m 33 25.6 5 5
21 m 13 23.9 5 4

Total 508.1 87 66
+ When SOP = 60 min and SPH = 5 min are defined, preictal iEEG signals with the time duration of at least 65 min can be selected.

Case 1:
iEEG (One channel)

Case 2:

iEEG (Three channels)

Case 3:

iEEG (Six channels)

1D-CNN

1D-CNN

1D-CNN Classification

Classification

Classification

Best case selected

Fig. 2. The architecture of the proposed method for seizure prediction. The iEEG signals of three channel cases (one
channel, three channels and six channels) are classified using the 1D-CNN model. Then, the channel case with the best
classification is finally selected for each patient.

2.2. Methodology

In the Freiburg Hospital iEEG dataset, the iEEG sig-

nals of each patient are recorded using six recording

channels, three of which are in-focus channels (from

seizure onset zones of the brain, denoted channels

1-3), and the other three are out-of-focus channels

(from seizure free zones of the brain, denoted chan-

nels 4-6). Based on the iEEG dataset, we discuss

three cases about the use of different iEEG channels.

The proposed method based on the channel-based

1D-CNN for seizure prediction is showed in Fig. 2.

Case 1 shows that only one channel (channel 1 to 6,

each channel in turn) is used for the prediction of

seizures. Case 2 shows that three channels (in-focus

channels 1-3 or out-of-focus channels 4-6) are used at

the same time. Case 3 shows that all channels (chan-

nels 1-6) are used simultaneously. The best channel

case is finally selected for each patient according to

the classification results.

2.2.1. Preprocessing

We used 30-sec sliding widows to segment the long-

term raw iEEG signals. For one 30-sec iEEG segment

with the sampling rate of 256 Hz, it can be seen as a
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vector or matrix of n×7680, where n (n = 1, 3 and

6) is the number of the selected channels. The 30-sec

iEEG segments are used as the inputs of the proposed

1D-CNN.

As shown in Table 1, the time duration of in-

terictal iEEG signals is about 24 hours, while that

of preictal iEEG signals ranges from about 2 to 5

hours (depending on the number of seizures of each

patient). It means that the sample imbalance is a key

problem in this work. In order to solve the problem

during the model training phase, an overlapped slid-

ing window technique was used.36,38 We used 30-sec

sliding windows without overlap to segment interic-

tal iEEG signals. However, for preictal iEEG signals

that were selected as the training set, we used 30-sec

sliding windows with the corresponding overlap rate

to generate more preictal segments. Fig. 3 shows the

details of the oversampling technique.

2.2.2. Convolutional neural network (CNN)

CNNs have achieved the remarkable results in the

seizure detection,44–47 the seizure control48 and the

detection of interictal epileptiform discharges.49 A

CNN model generally consists of convolution layers,

pooling layers and fully connected layers. A convolu-

tion layer performs convolution calculations on input

signals, and the convolution results are then nonlin-

earized by activation functions. In this work, the rec-

tified linear activation unit (ReLU) function was used

in the convolution layers. A pooling layer commonly

performs pooling operations on the outputs of a con-

volution layer to preserve higher-level representations.

In our 1D-CNN model, pooling processes, including

maximum pooling and global average pooling, were

used. After passing through convolutional layers and

pooling layers, the outputs are usually fed into fully

connected layers for the final classification.

In this work, the proposed 1D-CNN model is

showed in Fig. 4. Our model has four convolution-

block layers and two fully connected layers. The first

two convolution-block layers contain four convolution

blocks. For the two convolution blocks on the left, the

first convolution block contains a convolution layer

(32 kernels with the size of n×3 and the stride of 2),

a batch normalization (BN) layer and a max-pooling

(MP) layer (the pooling size of 3 and the stride of

2), and the second convolution block also contains a

convolution layer with 32 kernels with the size of 3

Interictal

Preictal

30 s30 s 30 s30 s

30 s
30 s

30 s
30 s

Fig. 3. For interictal iEEG signals, we use 30-sec sliding
windows without overlap. For preictal iEEG signals that
were selected as the training set, we use 30-sec sliding
windows with the corresponding overlap rate.

Features Concatenation

Conv (32@n× 3, =2)

BN

MP ( =3, =2)

Conv (32@3, =2)

BN

MP ( =3, =2)

Conv (32@n× 5, =2)

BN

MP ( =3, =2)

Conv (32@5, =2)

BN

MP ( =3, =2)

Conv (128@3, =1)

BN

MP ( =3, =1)

Conv (256@3, =1)

BN

MP ( =3, =1)

GAP

256

256

2

Labels    0 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 0  …

Alarm, L = 4

channels 

(n=1, 3, 6)

30 sec

FC

FC

iEEG

Fig. 4. The proposed 1D-CNN is showed. M@n×k1 or
M@k2: M is the number of kernels, n×k1 and k2 are the
sizes of kernels. Abbreviations: Conv, convolution; BN,
batch normalization; MP, max-pooling; s1, pooling size;
s2, stride; GAP, global average pooling; FC, fully con-
nected. L is the number of consecutive prediction labels
for an alarm.
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and the stride of 2, a BN layer and a MP layer with

the pooling size of 3 and the stride of 2. The struc-

ture of the two convolution blocks on the right is the

same as that of the two convolution blocks on the left.

The only difference is that the size of convolution ker-

nels in the first and sencond convolution layers. The

kernel sizes of these two convolution layers are n×5

and 5, respectively. The first two convolution-block

layers can process the input signals in parallel and

extract different feature maps with different kernel

sizes. The outputs of the first two convolution-block

layers are then concatenated. For extracting deeper

feature information, the concatenated feature maps

are sent into the third and fourth convolution-block

layers successively. The third convolution-block layer

has one convolution block with a convolutional layer

with 128 kernels (the size of 3 and the stride of 1),

a BN layer and a MP layer with the pooling size of

3 and the stride of 1. The fourth convolution-block

layer also has one convolution block including a con-

volutional layer (256 kernels with the size of 3 and

the stride of 1), a BN layer and a MP layer (the pool-

ing size of 3 and the stride of 1). The outputs of the

fourth convolution-block layer are globally averaged

as the inputs of the two fully connected layers. The

first and the second fully connected layers have 256

neurons with ReLU function and 2 output neurons

with Softmax function, respectively.

In order to accurately predict seizures and issue

alarms, the postprocessing for the outputs of 1D-CNN

was performed (as shown in Fig. 4). The condition for

an alarm to sound is that L consecutive predicted la-

bels are positive. In this work, the L value was finally

set to 4 after many tests. For avoiding unnecessary

repetitive alarms, when the first alarm sounds, the

second alarm can only sound after the end of SOP.

Hence, the second alarm in the period from the mo-

ment the first alarm sounds to the end of SOP is

prohibited by the system.

2.2.3. Model training

The patient-specific model was trained for each pa-

tient. In order to predict all seizures of each patient,

the approach of leave-one-out cross validation was ap-

plied. It means if a patient has K seizures, the model

training is performed K rounds. In each round, (K-

1) seizures are used for training, and the remaining

one is used for testing. All seizures can be predicted

after K rounds. Fig. 5 shows the details of the leave-

one-out cross validation. As shown in Fig. 5, in each

round, we also increased the preictal training sam-

ples by using the oversampling technique mentioned

in the preprocessing (Section 2.2.1), and the num-

ber of segments reserved for training and testing was

summarized in Table 2.

During model training, the Early-Stopping tech-

nique was also applied to prevent overfitting, and the

dropout rate of second fully connected layer was set

to 0.25. Based on Keras 2.3.1 with the Tensorflow

1.15.0 backend, our model was established and imple-

mented in Python 3.6, and two Nvidia Tesla P100

GPUs were configured to run the proposed model.

Training Training … TrainingTestingInterictal Training

1 2 3 K-1 K

Preictal …

Training Training… TrainingTraining

Data augmentation 

1 2 3 K-1 K

Testing

Training Training … TrainingTrainingInterictal Testing

1 2 3 K-1 K

Preictal …

Training Training … TrainingTraining

Data augmentation 

1 2 3 K-1 K

Testing

Round 1

Round K

…

Fig. 5. Leave-one-out cross validation: in each round,
(K-1) seizures are used for training, and the remaining
one is used for testing. All seizures can be predicted after
K rounds. In each round, the oversampling technique is
also applied to increase the preictal training samples.

2.2.4. System evaluation

We evaluated the performances of the proposed

method in the two levels (the segment-based level

and the event-based level) at the same time. Combin-

ing the results of the two levels, we finally selected

the best channel case for each patient.

• Segment-based level

In the segment-based level, the accuracy of sample

classification is calculated. The accuracy is expressed

as following:

Accuracy =
TP + TN

Total number of segments
, (1)
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Table 2. During model training with the leave-one-out cross validation, in each round, the number of
segments reserved for training and testing is summarized as below.

SOP = 30 min and SPH = 5min SOP = 60 min and SPH = 5 min

Training Testing Training Testing

Patient #Seizures Interictal Preictal Interictal Preictal #Seizures Interictal Preictal Interictal Preictal

1 4 2160 2160 720 60 3 1920 1920 960 120
2 3 1920 1920 960 60 – – – – –
3 5 2304 2304 576 60 4 2160 2160 720 120
4 5 2304 2304 576 60 3 1920 1920 960 120
5 5 2304 2304 576 60 2 1440 1440 1440 120
6 3 1920 1920 960 60 – – – – –
7 3 1968 1968 984 60 3 1968 1968 984 120
8 2 1452 1452 1452 60 2 1452 1452 1452 120
9 5 2292 2292 573 60 3 1912 1912 956 120
10 5 2352 2352 588 60 5 2352 2352 588 120
11 4 2169 2169 723 60 3 1928 1928 964 120
12 4 2160 2160 720 60 3 1920 1920 960 120
13 2 1440 1440 1440 60 2 1440 1440 1440 120
14 4 2151 2151 717 60 3 1912 1912 956 120
15 4 2160 2160 720 60 3 1920 1920 960 120
16 5 2304 2304 576 60 5 2304 2304 576 120
17 5 2312 2312 578 60 5 2312 2312 578 120
18 5 2388 2388 597 60 5 2388 2388 597 120
19 4 2196 2196 732 60 3 1952 1952 976 120
20 5 2456 2456 614 60 5 2456 2456 614 120
21 5 2292 2292 573 60 4 2151 2151 717 120

where TP is true positive, indicating the number of

true predicted preictal segments from preictal seg-

ments, and TN is true negative, indicating the num-

ber of true predicted interictal segments from inter-

ictal segments.

• Event-based level

In the event-based level, sensitivity and FPR are cal-

culated, and the definitions of them are proposed in

[40]. The sensitivity and the FPR are expressed by

the following formulas:

Sensitivity =
number of correct predictions

number of all seizures
,

(2)

FPR =
number of incorrect predictions

hours of interictal iEEG
. (3)

An excellent system is supposed to sound alarms with

higher sensitivity and lower FPR.

For testing statistical significance of the pro-

posed method, it needs to be compared with the ran-

dom predictior. The probability of a random alarm

can be defined as:50,51

p1 ≈ 1 − e−FPR·SOP , (4)

where FPR and SOP are false prediction rate and

seizure occurrence period, respectively. Therefore, the

probability of randomly predicting at least k out of K

independent seizures can be expressed as following:

p−value =
∑
j≥k

(
K

j

)
pj1(1 − p1)K−j , (5)

where k is the number of the predicted seizures, and

K is the number of all seizures. In this study, the

significance level is set to 0.05. It means when the

calculated p−value is less than 0.05, our method is

better than the random prediction.

3. Results

The proposed method with three channel cases (single

channel, three channels and all channels) is evaluated

on two different preictal periods: (1) SOP of 30 min

and SPH of 5 min; (2) SOP of 60 min and SPH of 5

min. The whole algorithm runs twice, and the aver-

aged results of the two levels are calculated for the

further analysis.

According to the results of the segment-based

level and the event-based level, the selection criteria

for the best channel case are defined as following: (1)

We first select the best channel situation according

to the sensitivity and FPR (the event-based level);

(2) If a patient has the same sensitivity and FPR

under several channel situations, we then combine

the accuracy (the segment-based level) of these chan-
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Fig. 6. In the event-based level with SOP of 30 min and SPH of 5 min, each subfigure shows the averaged sensitivity
and FPR of each patient under the nine channel situations (1, 2, 3, 4, 5, 6, 1-3, 4-6 and 1-6). The best channel situation is
selected for each patient. The left blue Y-axis and the right red Y-axis represent the FPR and the sensitivity, respectively.

Table 3. The results of our method with SOP of 30 min and SPH of 5 min. The whole
algorithm runs twice. After selecting the best channel situation, the averaged results
(accuracy, sensitivity and FPR) and the p−value are given for each patient.

Patient Interictal (h) #seizures Cs Accuracy (%) Sensitivity (%) FPR (/h) p−value

1 24 4 1a 99.13±0.77 100±0.00 0.00±0.00 0.000

2 24 3 4b 99.66±0.02 100±0.00 0.00±0.00 0.000
3 24 5 1a 98.13±0.02 100±0.00 0.00±0.00 0.000
4 24 5 2a 99.21±0.00 100±0.00 0.00±0.00 0.000
5 24 5 1a 95.58±1.93 100±0.00 0.06±0.09 0.000
6 24 3 1a 99.08±0.05 100±0.00 0.00±0.00 0.000

7 24.6 3 4-6b 97.65±0.16 100±0.00 0.00±0.00 0.000
8 24.2 2 1-3a 99.64±0.09 100±0.00 0.00±0.00 0.000

9 23.9 5 5b 100±0.00 100±0.00 0.00±0.00 0.000
10 24.5 5 3a 99.41±0.00 100±0.00 0.00±0.00 0.000
11 24.1 4 2a 99.89±0.07 100±0.00 0.00±0.00 0.000
12 24 4 3a 99.84±0.18 100±0.00 0.00±0.00 0.000

13 24 2 5b 97.98±0.02 50±0.00 0.00±0.00 0.000
14 23.9 4 3a 99.89±0.07 100±0.00 0.00±0.00 0.000

15 24 4 4b 98.62±0.32 100±0.00 0.00±0.00 0.000

16 24 5 4-6b 99.32±0.42 100±0.00 0.00±0.00 0.000

17 24.1 5 4-6b 99.58±0.29 100±0.00 0.00±0.00 0.000

18 24.9 5 4b 92.80±2.65 100±0.00 0.25±0.06 0.000
19 24.4 4 1a 98.70±0.49 100±0.00 0.00±0.00 0.000
20 25.6 5 1-3a 98.20±0.19 100±0.00 0.00±0.00 0.000
21 23.9 5 2a 98.28±0.16 100±0.00 0.00±0.00 0.000

Total 508.1 87 98.60±0.38 98.85±0.00 0.01±0.01

Cs means channel selected for the best classification; a Channels only from seizure onset zones of the brain; b Channels only from seizure
free zones of the brain.

nel situations to finally determine the best channel situation.
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Fig. 7. In the event-based level with SOP of 60 min and SPH of 5 min, each subfigure shows the averaged sensitivity
and FPR of each patient under the nine channel situations (1, 2, 3, 4, 5, 6, 1-3, 4-6 and 1-6). The best channel situation is
selected for each patient. The left blue Y-axis and the right red Y-axis represent the FPR and the sensitivity, respectively.

Table 4. The results of our method with SOP of 60 min and SPH of 5 min. The whole
algorithm runs twice. After selecting the best channel situation, the averaged results
(accuracy, sensitivity and FPR) and the p−value are given for each patient.

Patient Interictal (h) #seizures Cs∗ Accuracy (%) Sensitivity (%) FPR (/h) p−value
1 24 3 1a 97.27±0.85 100±0.00 0.00±0.00 0.000
3 24 4 1a 97.69±1.54 100±0.00 0.00±0.00 0.000
4 24 3 2a 99.26±0.00 100±0.00 0.00±0.00 0.000

5 24 2 5b 91.19±0.68 100±0.00 0.19±0.03 0.000
7 24.6 3 1a 98.21±0.44 100±0.00 0.00±0.00 0.000
8 24.2 2 1-3a 99.92±0.02 100±0.00 0.00±0.00 0.000

9 23.9 3 5b 99.57±0.00 100±0.00 0.00±0.00 0.000
10 24.5 5 3a 99.80±0.04 100±0.00 0.00±0.00 0.000
11 24.1 3 2a 99.64±0.11 100±0.00 0.00±0.00 0.000

12 24 3 4b 99.31±0.11 100±0.00 0.00±0.00 0.000

13 24 2 5b 96.12±0.05 50±0.00 0.00±0.00 0.000
14 23.9 3 3a 99.66±0.18 100±0.00 0.00±0.00 0.000

15 24 3 4b 97.89±0.55 100±0.00 0.00±0.00 0.000

16 24 5 4-6b 99.40±0.41 100±0.00 0.00±0.00 0.000

17 24.1 5 4-6b 97.75±0.14 100±0.00 0.04±0.00 0.000

18 24.9 5 4-6b 98.06±1.72 100±0.00 0.00±0.00 0.000
19 24.4 3 3a 99.80±0.06 100±0.00 0.00±0.00 0.000
20 25.6 5 1-3a 98.47±0.08 100±0.00 0.00±0.00 0.000
21 23.9 4 2a 99.05±0.25 100±0.00 0.00±0.00 0.000

Total 460.1 66 98.32±0.38 98.48±0.00 0.01±0.00
∗ Cs means channel selected for the best classification; a Channels only from seizure onset zones of the brain; b Channels only from seizure
free zones of the brain.

3.1. SOP of 30 min and SPH of 5 min

In the event-based level, the averaged results (sensitiv-

ity and FPR) are reported in Fig. 6. Each subfigure in

Fig. 6 shows the sensitivity and FPR of each patient

under nine channel situations (1, 2, 3, 4, 5, 6, 1-3, 4-6

and 1-6). For example, patient 20 obtains the same

sensitivity and FPR from channels 3, 4, 5, 1-3, 4-6
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and 1-6 (as shown in Fig. 6). Based on the selection

criteria for the best channel case, we then calculate

the accuracy of these channel situations, and the best

channel situation (channels 1-3) is determined due to

the highest accuracy of 98.20±0.19% (as shown in

Fig. 8(a)). After selecting the best channel situation

for each patient, we summarize the corresponding

sensitivity, FPR and accuracy in Table 3.
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Fig. 8. The example of patient 20 includes both event-
based and segment-based results for the selection of the
best channel situation. According to the results in the
conditions of SOP = 30 min and SOP = 60 min, the best
channel situation of channels 1-3 is finally selected.

As shown in Table 3, in the event-based level,

86 out of 87 seizures are accurately predicted, with

a sensitivity of 98.85%. The FPR is low at 0.01/h.

From the p−value of each patient, we can see that the

performance of the proposed method is much better

than that of the random prediction. In the segment-

based level, the accuracy of 19 patients is higher than

97%. The accuracy rates of the other two patients

(patients 5 and 18) are at 95.58% and 92.80%, re-

spectively. The averaged accuracy of 21 patients is

98.60%, which shows that our method can classify

interictal and preictal segments well.

3.2. SOP of 60 min and SPH of 5 min

In this preictal period, patients 2 and 6 are excluded,

and so total 19 patients are analyzed. Fig. 7 shows

the averaged sensitivity and FPR of 19 patients. Each

subfigure in Fig. 7 also shows the sensitivity and FPR

of each patient under nine channel situations. Ac-

cording to the selection criteria for the best channel

case, the best channel situation is selected for each

patient. For example, patient 20 attains the best re-

sult also with the channel situation of 1-3 (as shown

in Fig. 8(b)). For each patient, the best channel sit-

uation and the corresponding sensitivity, FPR and

accuracy are summarized in Table 4.

As shown in Table 4, 65 out of 66 seizures are

accurately predicted by the proposed method. The

high sensitivity of 98.48% and the low FPR of 0.01/h

are obtained (the event-based level). According to

the calculated p−value of each patient, our method

is much better than the random prediction in the

seizure prediction. In the segment-based level, 17 pa-

tients have an accuracy of more than 97%, and the

accuracy rates of patients 5 and 13 are 91.19% and

96.12%, respectively. The averaged accuracy of 19

patients is 98.32%.

3.3. Channel selection

Based on the results in Table 3 and Table 4, there

are several points that we need to explain. Firstly,

none of the 21 patients achieves the best result using

all channel (channels 1-6) iEEG signals. From this

point, we can see that the channel selection for each

patient is necessary. Secondly, most patients attain

the best results when only using single-channel rather

than multi-channel iEEG signals. Thirdly, under two

preictal periods, namely SOP of 30 min and SOP of

60 min with the same SPH of 5 min, most patients

have the same channel selection in obtaining the best

results, and so it shows the reliability of the results

and the stability of the proposed method.

According to the results in Table 3 (SOP of 30

min and SPH of 5 min) and Table 4 (SOP of 60 min

and SPH of 5 min), we also count the number of

patients corresponding to two types of channel condi-

tions. As shown in Fig 9, the number of patients with

channels selected only from the seizure onset zones is

slightly more than that of patients with channels se-

lected only from the seizure free zones. However, the

number of patients with channels selected from both
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zones is zero. Based on the findings, we can have

the following two thoughts: (1) The iEEG signals

recorded from the seizure free zones are important

in the seizure prediction, and their predictive perfor-

mance is sometimes better than the iEEG signals

recorded from the seizure onset zones; (2) In the pre-

diction of seizures, all channel iEEG signals are not

necessarily valid and channel selection is necessary.

The number of patient in each channel situation
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Fig. 9. In two different preictal periods, the number of
patients with the different channel conditions.

4. Discussion

CNNs have been used for the prediction of seizures

in [36], [38] and [56], while the studies used all chan-

nel iEEG signals, ignoring the channel selection. Al-

though the channel selection strategies have been ap-

plied in [57–60] for seizure prediction, these studies

mainly focused on the conventional machine learn-

ing methods.57–60 Hence, in this work, we proposed a

method of 1D-CNN combined with channel selection

strategy for seizure prediction. From the perspective

of incremental learning, the iEEG signals with a chan-

nel increase strategy (from single channel to multiple

channels, and then to all channels) were used as the

inputs of 1D-CNNs with the same structure. The

patient-specific model was then trained, and the best

channel case was selected for each patient according

to the classification results. From the results in Ta-

ble 3 and Table 4, we achieved high accuracy (98.60%

and 98.32%), high sensitivity (98.85% and 98.48%)

and low FPR (0.01/h and 0.01/h). It indicated that

our method was effective and had well performance in

using the long-term iEEG signals to predict seizures.

We also compared the results of this work and

the previous studies using the Freiburg Hospital

iEEG dataset. The details of the previous studies and

this work, including the total number of seizures, fea-

ture extraction methods and classifiers, were given in

Table 5. The four significant metrics related to seizure

prediction, namely sensitivity, FPR, SOP and SPH,

were also given in Table 5. As shown in Table 5, the

methods of threshold analysis combined with linear

or nonlinear features achieved the sensitivity ranging

from 42% to 92.9% and the FPR ranging from 0.06/h

to 0.15/h.17–21,52,55 The highset sensitivity (92.9%)

was attained in the study [21], but the study only

used 10 patients for the analysis of seizure prediction.

The conventional machine learning methods, includ-

ing SVM,22,23,26,53,54 LS-SVM25 and Bayesian24 ,

were used for the prediction of seizures. The sensitiv-

ity and the FPR obtained by these methods ranged

from 85.5% to 100% and 0.03/h to 0.36/h, respec-

tively. The SVM in the study [54] achieved the high-

est sensitivity of 100% with the FPR of 0.0324/h.

The deep learning methods, including 2D-CNN36,38

and GAN,37 combined with the preprocessing tech-

niques (STFT and DTF) were used to analyze the

same iEEG dataset, and the sensitivity ranging from

81.4% to 90.8% and the FPR ranging from 0.03/h

to 0.08/h were attained. The 2D-CNN used in the

study [38] achieved the highest sensitiivty of 90.8%

with the FPR of 0.08/h.

Compared with the results in Table 5, our

method achieved high sensitivity (98.85% and

98.48%) and low FPR (0.01/h and 0.01/h), which

showed that the performances of our method were

better than that of most previous studies. Although

the sensitivity of 100% and the FPR of 0.03 were

obtained in the study [54], the authors ignored the

actual clinical considerations by setting SPH to zero,

and they also used the time-consuming and complex

feature selection for each patient.

In this work, the Freiburg Hospital iEEG dataset

is recorded with three in-focus channels (channels 1-3)

and three out-of-focus channels (channels 4-6). Con-

sequently, the number of the combinations of chan-

nels is 63 (C1
6 + C2

6 + C3
6 + C4

6 + C5
6 + C6

6 ). One

limitation of this work is that our method discusses

nine channel combinations (1, 2, 3, 4, 5, 6, 1-3, 4-6

and 1-6) for seizure prediction. Therefore, more sub-

sets of channels can to be selected and tested. In the

future work, all the channel combinations combined

with deep learning approaches will be further ana-

lyzed and discussed. The second limitation is that

our work only uses a 1D-CNN model combined with

the channel selection strategy for the classification of
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Table 5. The list of previous studies and this work using the Freiburg Hospital iEEG dataset for seizure
prediction.

Authors #Patients #Seizures Feature Classifier SEN (%) FPR (/h) SOP SPH

Maiwald et al.
(2004)17

21 88 Dynamical simi-
larity index

Threshold
crossing

42 0.15 30 min 2 min

Winterhalder
et al. (2006)18

21 88 Phase coherence,
lag synchroniza-
tion

Threshold
crossing

60 0.15 30 min 10 min

Park et al.
(2011)22

18 80 Spectral power of
nine bands

SVM 97.5 0.27 30 min 0c

Williamson et
al. (2012)23

19 83 Correlation pat-
terns

SVM 85.5 0.03 30 min 0c

Li et al.
(2013)52

21 87 Spike rate Threshold
crossing

75.8 0.09 50 min 10 sec

Zheng et al.
(2014)19

10 50 phase
synchronization

Threshold
crossing

>70 <0.15 30 min 10 min

Eftekhar et al.
(2014)20

21 87 Multiresolution
N-gram

Threshold
crossing

90.95 0.06 20 min 10 min

Ozdemir et al.
(2014)24

21 87 Hilbert-Huang
transform

Bayesian 96.55 0.21 35 min 5 min

Wang et al.
(2014)53

19 83 Amplitude and
frequency modu-
lation features

SVM 98.55 0.054 50 min 0c

Zhang et al.
(2016)54

18 80 Power spectral
density ratio

SVM 100 0.0324 50 min 0c

Parvez et al.
(2017)25

21 87 Phase-
match error, devi-
ation, fluctuation

LS-SVM 95.4 0.36 30 min 0c

Sharif et al.
(2017)26

19 83 Fuzzy rules on
Poincaré plane

SVM 91.8-96.6 0.05-0.08 15 min 2-42 min

Aarabi et al.
(2017)21

10 28 Univariate and
bivariate nonlin-
ear features

Rule-based
decision
making

92.9 0.096 50 min 10 sec

Truong et al.
(2018)36

13 59 STFT 2D-CNN 81.4 0.03 30 min 5 min

Truong et al.
(2019)37

13 59 STFT GAN – – 30 min 5 min

Wang et al.
(2020)38

19 82 DTF 2D-CNN 90.8 0.08 30 min 5 min

Zhang et al.
(2020)55

20 65 Fractal dimen-
sion, intercept

Gradient boos-
ting classifier

90.42 0.12 30 min 2 min

20 65 91.67 0.10 50 min 2 min

This work 21 87 30-sec iEEG seg-
ments

Channel-based
1D-CNN

98.85 0.01 30 min 5 min

19 66 98.48 0.01 60 min 5 min

Abbreviations: SEN, sensitivity; FPR, false prediction rate; SOP, seizure occurrence period; SPH, seizure prediction horizon; SVM, support
vector machine; LS-SVM, least square-SVM; STFT, short-time Fourier transform; DTF, directed transfer function; 2D-CNN, two dimensional
convolutional neural network; GAN, generative adversarial networks; 1D-CNN, one dimensional convolutional neural network
c SPH is also called the intervention time. When SPH is set to zero, it means that the time left for clinical intervention is zero, ignoring
actual clinical considerations.

the iEEG signals. Other deep learning and machine

learning algorithms, such as 2D-CNN and LSTM, En-

hanced Probabilistic Neural Network,61 Neural Dy-

namic Classification Algorithm,62 Dynamic Ensemble

Learning Algorithm63 and Finite Element Machine,64

combined with the channel selection strategy can also

be applied to the same iEEG dataset for seizure pre-

diction.
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5. Conclusion

In this paper, a novel method of 1D-CNN combined

with channel selection strategy was proposed for the

prediction of seizures. Different from the many previ-

ous studies only using all channel iEEG signals, the

iEEG signals of single channel, multiple channels and

all channels were classified using a 1D-CNN model

with four convolution-block layers. Then, according

to the results of classification, the channel case with

the best classification result was finally selected for

each patient.

The proposed method was evaluated on the

Freiburg Hospital iEEG dataset recorded with three

in-focus channels (channels 1-3) and three out-of-

focus channels (channels 4-6), and the iEEG signals

of nine channel situations (1, 2, 3, 4, 5, 6, 1-3, 4-6 and

1-6) were analyzed to select the channel case with

the best classification for each patient. Our method

successfully predicted 86 out of 87 seizures (except

one seizure in patient 13). The overall results, (1)

98.60% accuracy, 98.85% sensitivity and 0.01/h FPR

in the SOP of 30 min and SPH of 5 min; (2) 98.32%

accuracy, 98.48% sensitivity and 0.01/h FPR in the

SOP of 60 min and SPH of 5 min, were achieved.

Compared with the many previous studies using the

same iEEG dataset, our method showed a better per-

formance in the seizure prediction. Our method was

also statistically better than the random prediction

for all patients in the Freiburg Hospital iEEG dataset.
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