Structural Parameters under Partial Least Squares and Covariance-Based Structural Equation Modeling : A Comment on Yuan and Deng (2021)
Schuberth, F., Rosseel, Y., Rönkkö, M., Trinchera, L., Kline, R. B., & Henseler, J. (2023). Structural Parameters under Partial Least Squares and Covariance-Based Structural Equation Modeling : A Comment on Yuan and Deng (2021). Structural Equation Modeling : A Multidisciplinary Journal, 30(3), 339-345. https://doi.org/10.1080/10705511.2022.2134140
Julkaistu sarjassa
Structural Equation Modeling : A Multidisciplinary JournalTekijät
Päivämäärä
2023Tekijänoikeudet
© 2022 The Author(s). Published with license by Taylor & Francis Group, LLC
In their article, Yuan and Deng argue that a structural parameter under partial least squares structural equation modeling (PLS-SEM) is zero if and only if the same structural parameter is zero under covariance-based structural equation modeling (CB-SEM). Yuan and Deng then conclude that statistical tests on individual structural parameters assessing the null hypothesis of no effect can achieve the same purpose in CB-SEM and PLS-SEM. Our response to their article highlights that the relationship they find between PLS-SEM and CB-SEM structural parameters is not universally valid, and that consequently, tests on individual parameters in CB-SEM and PLS-SEM generally do not fulfill the same purpose.
Julkaisija
RoutledgeISSN Hae Julkaisufoorumista
1070-5511Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/160162249
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
Jörg Henseler gratefully acknowledges financial support from FCT Fundação para a Cincia e a Tecnologia (Portugal), national funding through a research grant from the Information Management Research Center—MagIC/NOVA IMS (UIDB/04152/2020).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Comparison of three ordinal logistic regression methods for predicting person’s self-assessed health status with functional, haemodynamic covariates
Markkanen, Merri-Lotta (2023)Lääketieteen parissa perinteiset kyselytutkimukset ovat yhä suosittuja, jonka myötä myös järjestysasteikollisten muuttujien analyysia suoritetaan paljon. Modernin teknologian kehittyminen näkyy kuitenkin myös tällä ... -
Premature conclusions about the signal‐to‐noise ratio in structural equation modeling research : A commentary on Yuan and Fang (2023)
Schuberth, Florian; Schamberger, Tamara; Rönkkö, Mikko; Liu, Yide; Henseler, Jörg (John Wiley & Sons, 2023)In a recent article published in this journal, Yuan and Fang (British Journal of Mathematical and Statistical Psychology, 2023) suggest comparing structural equation modeling (SEM), also known as covariance-based SEM ... -
Polynomial Regression and Measurement Error : Implications for Information Systems Research
Aguirre-Urreta, Miguel I.; Rönkkö, Mikko; Hu, Jiang (Association for Computing Machinery (ACM), 2020)Many of the phenomena of interest in information systems (IS) research are nonlinear, and it has consequently been recognized that by applying linear statistical models (e.g., linear regression), we may ignore important ... -
Modelling phytoplankton in boreal lakes
Pätynen, Anita (University of Jyväskylä, 2014) -
Eight Simple Guidelines for Improved Understanding of Transformations and Nonlinear Effects
Rönkkö, Mikko; Aalto, Eero; Tenhunen, Henni; Aguirre-Urreta, Miguel I. (SAGE Publications, 2022)Transforming variables before analysis or applying a transformation as a part of a generalized linear model are common practices in organizational research. Several methodological articles addressing the topic, either ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.