Show simple item record

dc.contributor.authorZolotukhin, Mikhail
dc.contributor.authorMiraghaie, Parsa
dc.contributor.authorZhang, Di
dc.contributor.authorHämäläinen, Timo
dc.date.accessioned2022-12-02T12:02:44Z
dc.date.available2022-12-02T12:02:44Z
dc.date.issued2022
dc.identifier.citationZolotukhin, M., Miraghaie, P., Zhang, D., & Hämäläinen, T. (2022). On Assessing Vulnerabilities of the 5G Networks to Adversarial Examples. <i>IEEE Access</i>, <i>10</i>, 126285-126303. <a href="https://doi.org/10.1109/access.2022.3225921" target="_blank">https://doi.org/10.1109/access.2022.3225921</a>
dc.identifier.otherCONVID_164217034
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/84209
dc.description.abstractThe use of artificial intelligence and machine learning is recognized as the key enabler for 5G mobile networks which would allow service providers to tackle the network complexity and ensure security, reliability and allocation of the necessary resources to their customers in a dynamic, robust and trustworthy way. Dependability of the future generation networks on accurate and timely performance of its artificial intelligence components means that disturbance in the functionality of these components may have negative impact on the entire network. As a result, there is an increasing concern about the vulnerability of intelligent machine learning driven frameworks to adversarial effects. In this study, we evaluate various adversarial example generation attacks against multiple artificial intelligence and machine learning models which can potentially be deployed in future 5G networks. First, we describe multiple use cases for which attacks on machine learning components are conceivable including the models employed and the data used for their training. After that, attack algorithms, their implementations and adjustments to the target models are summarised. Finally, the attacks implemented for the aforementioned use cases are evaluated based on deterioration of the objective functions optimised by the target models.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartofseriesIEEE Access
dc.rightsCC BY 4.0
dc.subject.other5G networks
dc.subject.otheradversarial machine learning
dc.subject.otherartificial intelligence
dc.subject.otherdeep learning
dc.titleOn Assessing Vulnerabilities of the 5G Networks to Adversarial Examples
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202212025473
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingfi
dc.contributor.oppiaineTekniikkafi
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingen
dc.contributor.oppiaineEngineeringen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange126285-126303
dc.relation.issn2169-3536
dc.relation.volume10
dc.type.versionpublishedVersion
dc.rights.copyright© Authors, 2022
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysosyväoppiminen
dc.subject.yso5G-tekniikka
dc.subject.ysotekoäly
dc.subject.ysokoneoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p39324
jyx.subject.urihttp://www.yso.fi/onto/yso/p29372
jyx.subject.urihttp://www.yso.fi/onto/yso/p2616
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1109/access.2022.3225921
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0