Tracking a rat in an open field experiment with a deep learning-based model
Authors
Date
2021Copyright
This publication is copyrighted. You may download, display and print it for Your own personal use. Commercial use is prohibited.
New artificial neural network methods have changed the way animals are tracked in neuroscience and psychology experiments. The purpose of this thesis is to test the state-of-the-art method of animal tracking DeepLabCut and to develop a usable model for tracking rats in an open field type experiment, and to use tracking information to extract researchrelated key figures via self-tailored analysis software. The model trained with the DeepLabCut and 825 labeled images was accurate and suitable to be used in a research experiment. With the help of tracked body parts, it was possible to extract meaningful key figures for further analysis in a research experiment. Uudet keinotekoisiin hermoverkkoihin perustuvat menetelmät ovat muuttaneet sitä, miten eläimiä seurataan neurotieteen ja psykologian koeasetelmissa. Tämän tutkimuksen tarkoituksena on ollut testata neuroverkkoihin perustuvaa DeepLabCutmenetelmää rottien seurantaan avoimen kentän testin tyyppisessä koeasetelmassa ja tuottaa seurantadatasta tutkimusten kannalta merkityksellisiä avainlukuja itse kehitetyn analyysiohjelman avulla. DeepLabCutilla ja 825 kuvalla opetettu malli oli tarkka ja soveltuva tutkimuskäyttöön. Seurattujen eläimen kehopisteiden avulla pystyttiin tuottamaan tunnuslukuja tutkimusten analyysejä varten.
Keywords
animal tracking artificial neural networks convolutional neural networks DeepLabCut machine vision open field test jyrsijät rotta (laji) neurotieteet syväoppiminen koneoppiminen neuroverkot tekoäly ohjelmistokehitys bonsai videokamerat ruhot oppiminen rodents Rattus norvegicus neurosciences deep learning machine learning neural networks (information technology) artificial intelligence software development video cameras animal bodies learning
Metadata
Show full item recordCollections
- Pro gradu -tutkielmat [23922]
Related items
Showing items with similar title or keywords.
-
The Impact of Regularization on Convolutional Neural Networks
Zeeshan, Khaula (2018)Syvä oppiminen (engl. deep learning) on viime aikoina tullut suosituimmaksi koneoppimisen menetelmäksi. Konvoluutio(hermo)verkko on yksi suosituimmista syvän oppimisen arkkitehtuureista monimutkaisiin ongelmiin kuten kuvien ... -
Using deep neural networks for kinematic analysis : challenges and opportunities
Cronin, Neil J. (Elsevier BV, 2021)Kinematic analysis is often performed in a lab using optical cameras combined with reflective markers. With the advent of artificial intelligence techniques such as deep neural networks, it is now possible to perform such ... -
Artificial Intelligence for Cybersecurity : A Systematic Mapping of Literature
Wiafe, Isaac; Koranteng, Felix N.; Obeng, Emmanuel N.; Assyne, Nana; Wiafe, Abigail; Gulliver, Stephen R. (IEEE, 2020)Due to the ever-increasing complexities in cybercrimes, there is the need for cybersecurity methods to be more robust and intelligent. This will make defense mechanisms to be capable of making real-time decisions that can ... -
Explainable AI for Industry 4.0 : Semantic Representation of Deep Learning Models
Terziyan, Vagan; Vitko, Oleksandra (Elsevier, 2022)Artificial Intelligence is an important asset of Industry 4.0. Current discoveries within machine learning and particularly in deep learning enable qualitative change within the industrial processes, applications, systems ... -
Radiosignaalien tunnistaminen neuroverkon avulla
Colliander, Jeremias (2022)Tekoäly on kehittynyt viime vuosina huimaa tahtia ja sitä on alettu soveltaa uusien haasteiden ratkaisemiseksi. Yksi tällainen haaste on pitkään ollut useiden radiosignaalien luokittelu toisistaan riittävällä tarkkuudella. ...