Analysis of Somatosensory Cortical Responses to Different Electrotactile Stimulations as a Method Towards an Objective Definition of Artificial Sensory Feedback Stimuli : An MEG Pilot Study
Liu, J., Piitulainen, H., & Vujaklija, I. (2022). Analysis of Somatosensory Cortical Responses to Different Electrotactile Stimulations as a Method Towards an Objective Definition of Artificial Sensory Feedback Stimuli : An MEG Pilot Study. In EMBC 2022 : 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (pp. 4813-4816). IEEE. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. https://doi.org/10.1109/embc48229.2022.9871779
Published in
Annual International Conference of the IEEE Engineering in Medicine and Biology SocietyDate
2022Copyright
© 2022, IEEE
Sensory feedback is a critical component in many human-machine interfaces (e.g., bionic limbs) to provide missing sensations. Specifically, electrotactile stimulation is a popular feedback modality able to evoke configurable sensations by modulating pulse amplitude, duration, and frequency of the applied stimuli. However, these sensations coded by electrotactile parameters are thus far predominantly determined by subjective user reports, which leads to heterogeneous and unstable feedback delivery. Thus, a more objective understanding of the impact that different stimulation parameters induce in the brain, is needed. Analysis of cortical responses to electrotactile afference might be an effective method in this regard. In this study, we used magnetoencephalography (MEG) to investigate the somatosensory evoked fields (SEFs) and equivalent current dipoles (ECDs) locations in nine non-invasive electrotactile stimulation conditions (1.2T, 1.5T, 1.8T) × (1 ms, 10 ms, 100 ms) with fixed 1s interval. T is the subject specific sensory threshold of the left index finger. In all conditions, we observed SEFs peaking at ~ 60 ms in the contralateral primary somatosensory cortex. While the amplitudes of the SEFs around 60 ms followed the increase in the stimulation pulse amplitude, the cortical activations were strongest when the stimulus pulse duration was set to 10 ms. These initial results indicate that the somatosensory cortical activations can provide information on the electrotactile parameters of pulse amplitude and duration, and the prosed methodology might be used for an objective interpretation of different artificial sensory feedback arrangements. Clinical Relevance―Analysis of cortical spatiotemporal representations to electrotactile stimulation can potentially be used for tailoring optimal sensory feedback delivery in patients with sensorimotor impairments.
...
Publisher
IEEEParent publication ISBN
978-1-7281-2783-5Conference
International Conference of the IEEE Engineering in Medicine & Biology SocietyIs part of publication
EMBC 2022 : 44th Annual International Conference of the IEEE Engineering in Medicine & Biology SocietyISSN Search the Publication Forum
2375-7477Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/155911885
Metadata
Show full item recordCollections
- Liikuntatieteiden tiedekunta [3076]
Additional information about funding
Academy of Finland (Grant Number: 333149 (Hi-Fi BiNDIng),296240,327228)License
Related items
Showing items with similar title or keywords.
-
Gating Patterns to Proprioceptive Stimulation in Various Cortical Areas : An MEG Study in Children and Adults using Spatial ICA
Vallinoja, Jaakko; Jaatela, Julia; Nurmi, Timo; Piitulainen, Harri (Oxford University Press, 2021)Proprioceptive paired-stimulus paradigm was used for 30 children (10-17 years) and 21 adult (25-45 years) volunteers in magnetoencephalography (MEG). Their right index finger was moved twice with 500-ms interval every 4 ± ... -
Attention directed to proprioceptive stimulation alters its cortical processing in the primary sensorimotor cortex
Piitulainen, Harri; Nurmi, Timo; Hakonen, Maria (Wiley-Blackwell, 2021)Movement‐evoked fields to passive movements and corticokinematic coherence between limb kinematics and magnetoencephalographic signals can both be used to quantify the degree of cortical processing of proprioceptive ... -
Neural generators of the frequency-following response elicited to stimuli of low and high frequency : a magnetoencephalographic (MEG) study
Gorina-Careta, Natàlia; Kurkela, Jari L.O.; Hämäläinen, Jarmo; Astikainen, Piia; Escera, Carles (Elsevier, 2021)The frequency-following response (FFR) to periodic complex sounds has gained recent interest in auditory cognitive neuroscience as it captures with great fidelity the tracking accuracy of the periodic sound features in the ... -
Magnetoencephalography Responses to Unpredictable and Predictable Rare Somatosensory Stimuli in Healthy Adult Humans
Xu, Qianru; Ye, Chaoxiong; Hämäläinen, Jarmo A.; Ruohonen, Elisa M.; Li, Xueqiao; Astikainen, Piia (Frontiers Media SA, 2021)Mismatch brain responses to unpredicted rare stimuli are suggested to be a neural indicator of prediction error, but this has rarely been studied in the somatosensory modality. Here, we investigated how the brain responds ... -
Emotions and Technoethics
Saariluoma, Pertti; Rousi, Rebekah (Springer International Publishing, 2020)The relationship between emotions and ethics has been debated for centuries. The act of understanding emotions through the framework of ethics involves accepting that emotions are to some extent culturally dependent. By ...