Näytä suppeat kuvailutiedot

dc.contributor.authorPyo, Kyunglim
dc.contributor.authorMatus, María Francisca
dc.contributor.authorMalola, Sami
dc.contributor.authorHulkko, Eero
dc.contributor.authorAlaranta, Johanna
dc.contributor.authorLahtinen, Tanja
dc.contributor.authorHäkkinen, Hannu
dc.contributor.authorPettersson, Mika
dc.date.accessioned2022-11-01T08:03:51Z
dc.date.available2022-11-01T08:03:51Z
dc.date.issued2022
dc.identifier.citationPyo, K., Matus, M. F., Malola, S., Hulkko, E., Alaranta, J., Lahtinen, T., Häkkinen, H., & Pettersson, M. (2022). Tailoring the interaction between a gold nanocluster and a fluorescent dye by cluster size : creating a toolbox of range-adjustable pH sensors. <i>Nanoscale Advances</i>, <i>4</i>(21), 4579-4588. <a href="https://doi.org/10.1039/D2NA00487A" target="_blank">https://doi.org/10.1039/D2NA00487A</a>
dc.identifier.otherCONVID_159321652
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/83736
dc.description.abstractWe present a novel strategy for tailoring the fluorescent azadioxatriangulenium (KU) dye-based pH sensor to the target pH range by regulating the pKa value of the gold nanoclusters. Based on the correlation between the pKa and surface curvature of ligand-protected nanoparticles, the pKa value of the gold nanoclusters was controlled by size. In particular, three different-sized para-mercaptobenzoic acid (p-MBA) protected gold nanoclusters, Au25(p-MBA)18, Au102(p-MBA)44, and Au210–230(p-MBA)70–80 were used as the regulator for the pH range of the KU response. The negatively charged gold nanoclusters enabled the positively charged KU to bind to the surface, forming a complex and quenching the fluorescence of the KU by the energy transfer process. The fluorescence was restored after adjusting the surface charge of the gold nanocluster by controlling the solution pH. In addition, the KU exhibited a significantly different pH response behaviour for each gold nanocluster. Au210–230(p-MBA)70–80 showed a higher pH response range than Au102(p-MBA)44, which was intuitive. However, Au25(p-MBA)18 showed an unexpectedly high pH response behaviour. pKa titration measurement, molecular dynamics simulations, and essential dynamics analysis showed that small nanoclusters do not follow the scaling between the curvature and the pKa value. Instead, the behaviour is governed by the distribution and interaction of p-MBA ligands on the nanocluster surface. This work presents an effective design strategy for fabricating a range adjustable pH sensor by understanding the protonation behaviour of the ultrasmall gold nanoclusters in an atomic range.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherRoyal Society of Chemistry (RSC)
dc.relation.ispartofseriesNanoscale Advances
dc.rightsCC BY-NC 3.0
dc.titleTailoring the interaction between a gold nanocluster and a fluorescent dye by cluster size : creating a toolbox of range-adjustable pH sensors
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202211015041
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineOrgaaninen kemiafi
dc.contributor.oppiaineNanoscience Centeren
dc.contributor.oppiainePhysical Chemistryen
dc.contributor.oppiaineOrganic Chemistryen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange4579-4588
dc.relation.issn2516-0230
dc.relation.numberinseries21
dc.relation.volume4
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 The Author(s). Published by the Royal Society of Chemistry
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber319208
dc.relation.grantnumber292352
dc.subject.ysopH
dc.subject.ysoilmaisimet
dc.subject.ysoväriaineet
dc.subject.ysonanohiukkaset
dc.subject.ysofluoresenssi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p4555
jyx.subject.urihttp://www.yso.fi/onto/yso/p4220
jyx.subject.urihttp://www.yso.fi/onto/yso/p2176
jyx.subject.urihttp://www.yso.fi/onto/yso/p23451
jyx.subject.urihttp://www.yso.fi/onto/yso/p3265
dc.rights.urlhttps://creativecommons.org/licenses/by-nc/3.0/
dc.relation.doi10.1039/D2NA00487A
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramResearch costs of Academy Professor, AoFen
jyx.fundingprogramResearch post as Academy Professor, AoFen
jyx.fundingprogramAkatemiaprofessorin tutkimuskulut, SAfi
jyx.fundingprogramAkatemiaprofessorin tehtävä, SAfi
jyx.fundinginformationThis work was supported by the Academy of Finland (grants 292352, 319208), the post-doctoral program of the NSC, and by the Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2021R1A6A3A03038668). The computations were made at the Finnish National Supercomputing Centre CSC.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY-NC 3.0
Ellei muuten mainita, aineiston lisenssi on CC BY-NC 3.0