dc.contributor.author | Saarela, Mirka | |
dc.contributor.author | Geogieva, Lilia | |
dc.date.accessioned | 2022-09-28T11:31:08Z | |
dc.date.available | 2022-09-28T11:31:08Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Saarela, M., & Geogieva, L. (2022). Robustness, Stability, and Fidelity of Explanations for a Deep Skin Cancer Classification Model. <i>Applied Sciences</i>, <i>12</i>(19), Article 9545. <a href="https://doi.org/10.3390/app12199545" target="_blank">https://doi.org/10.3390/app12199545</a> | |
dc.identifier.other | CONVID_156773385 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/83335 | |
dc.description.abstract | Skin cancer is one of the most prevalent of all cancers. Because of its being widespread and externally observable, there is a potential that machine learning models integrated into artificial intelligence systems will allow self-screening and automatic analysis in the future. Especially, the recent success of various deep machine learning models shows promise that, in the future, patients could self-analyse their external signs of skin cancer by uploading pictures of these signs to an artificial intelligence system, which runs such a deep learning model and returns the classification results. However, both patients and dermatologists, who might use such a system to aid their work, need to know why the system has made a particular decision. Recently, several explanation techniques for the deep learning algorithm’s decision-making process have been introduced. This study compares two popular local explanation techniques (integrated gradients and local model-agnostic explanations) for image data on top of a well-performing (80% accuracy) deep learning algorithm trained on the HAM10000 dataset, a large public collection of dermatoscopic images. Our results show that both methods have full local fidelity. However, the integrated gradients explanations perform better with regard to quantitative evaluation metrics (stability and robustness), while the model-agnostic method seem to provide more intuitive explanations. We conclude that there is still a long way before such automatic systems can be used reliably in practice. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | MDPI AG | |
dc.relation.ispartofseries | Applied Sciences | |
dc.rights | CC BY 4.0 | |
dc.subject.other | explainable artificial intelligence | |
dc.subject.other | interpretable machine learning | |
dc.subject.other | skin cancer | |
dc.subject.other | convolutional neural network | |
dc.subject.other | deep learning | |
dc.subject.other | integrated gradients | |
dc.subject.other | local model-agnostic explanations | |
dc.title | Robustness, Stability, and Fidelity of Explanations for a Deep Skin Cancer Classification Model | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202209284691 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Resurssiviisausyhteisö | fi |
dc.contributor.oppiaine | Koulutusteknologia ja kognitiotiede | fi |
dc.contributor.oppiaine | Human and Machine based Intelligence in Learning | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.contributor.oppiaine | School of Resource Wisdom | en |
dc.contributor.oppiaine | Learning and Cognitive Sciences | en |
dc.contributor.oppiaine | Human and Machine based Intelligence in Learning | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2076-3417 | |
dc.relation.numberinseries | 19 | |
dc.relation.volume | 12 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2022 by the authors. Licensee MDPI, Basel, Switzerland | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | syväoppiminen | |
dc.subject.yso | koneoppiminen | |
dc.subject.yso | neuroverkot | |
dc.subject.yso | diagnostiikka | |
dc.subject.yso | ihosyöpä | |
dc.subject.yso | päätöksentukijärjestelmät | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p39324 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7292 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p416 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p13613 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27803 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.dataset | https://challenge.isic-archive.com/data/#2018 | |
dc.relation.doi | 10.3390/app12199545 | |
jyx.fundinginformation | The authors appreciate the HPC-Europa3 research visit programme, which is funded by the European Commission H2020—Research and Innovation programme (under grant agreement number 730897). | |
dc.type.okm | A1 | |