Sub- to super-Poissonian crossover of current noise in helical edge states coupled to a spin impurity in a magnetic field
Probst, B., Virtanen, P., & Recher, P. (2022). Sub- to super-Poissonian crossover of current noise in helical edge states coupled to a spin impurity in a magnetic field. Physical Review B, 106(8), Article 085406. https://doi.org/10.1103/PhysRevB.106.085406
Published in
Physical Review BDate
2022Copyright
©2022 American Physical Society
Edge states of two-dimensional topological insulators are helical and single-particle backscattering is prohibited by time-reversal symmetry. In this paper, we show that an isotropic exchange coupling of helical edge states (HES) to a spin 1/2 impurity subjected to a magnetic field results in characteristic backscattering current noise (BCN) as a function of bias voltage and tilt angle between the direction of the magnetic field and the quantization axis of the HES. In particular, we find transitions from sub-Poissonian (antibunching) to super-Poissonian (bunching) behavior as a direct consequence of the helicity of the edge state electrons. We use the method of full counting statistics within a master equation approach treating the exchange coupling between the spin-1/2 impurity and the HES perturbatively. We express the BCN via coincidence correlation functions of scattering processes between the HES, which gives a precise interpretation of the Fano factor in terms of bunching and antibunching behavior of electron jump events. We also investigate the effect of electron-electron interactions in the HES in terms of the Tomonaga-Luttinger liquid theory.
...
Publisher
American Physical Society (APS)ISSN Search the Publication Forum
2469-9950Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/155854199
Metadata
Show full item recordCollections
Related funder(s)
European Commission; Research Council of FinlandFunding program(s)
FET Future and Emerging Technologies, H2020; Academy Project, AoF
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Additional information about funding
P.V. acknowledges funding from EU's Horizon 2020 research, from the innovation program under Grant Agreement No. 800923 (SUPERTED) and from Academy of Finland Project No. 317118. P.R. acknowledges financial support by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) within the framework of Germany's Excellence Strategy–EXC-2123 QuantumFrontiers–390837967.License
Related items
Showing items with similar title or keywords.
-
Application of time-dependent many-body perturbation theory to excitation spectra of selected finite model systems
Säkkinen, Niko (University of Jyväskylä, 2016)In this thesis, an approximate method introduced to solve time-dependent many-body problems known as time-dependent many-body perturbation theory is studied. Many-body perturbation theory for interacting electrons and ... -
In and Out-of-Equilibrium Ab Initio Theory of Electrons and Phonons
Stefanucci, Gianluca; van Leeuwen, Robert; Perfetto, Enrico (American Physical Society (APS), 2023)In this work, we lay down the ab initio many-body quantum theory of electrons and phonons in equilibrium as well as in steady-state or time-varying settings. Our focus is on the harmonic approximation, but the developed ... -
Reply to : “Topological and trivial domain wall states in engineered atomic chains”
Huda, Md Nurul; Kezilebieke, Shawulienu; Ojanen, Teemu; Drost, Robert; Liljeroth, Peter (Nature Publishing Group, 2022) -
Polariton-assisted long-distance energy transfer between excitons in two-dimensional semiconductors
Pajunpää, Tuomas; Nigmatulin, Fedor; Akkanen, Suvi-Tuuli; Fernandez, Henry; Groenhof, Gerrit; Sun, Zhipei (American Physical Society (APS), 2024)Strong exciton-photon coupling offers an effective path for polariton-mediated long-distance coherent energy transfer (ET) between excitonic states. Here, we demonstrate strong coupling between excitons in WS2 monolayers, ... -
Acoustic wave tunneling across a vacuum gap between two piezoelectric crystals with arbitrary symmetry and orientation
Geng, Zhuoran; Maasilta, Ilari J. (American Physical Society (APS), 2022)It is not widely appreciated that an acoustic wave can “jump” or “tunnel” across a vacuum gap between two piezoelectric solids, nor has the general case been formulated or studied in detail. Here, we remedy that situation, ...