Show simple item record

dc.contributor.authorTerziyan, Vagan
dc.contributor.authorMalyk, Diana
dc.contributor.authorGolovianko, Mariia
dc.contributor.authorBranytskyi, Vladyslav
dc.date.accessioned2022-09-05T05:04:56Z
dc.date.available2022-09-05T05:04:56Z
dc.date.issued2022
dc.identifier.citationTerziyan, V., Malyk, D., Golovianko, M., & Branytskyi, V. (2022). Hyper-flexible Convolutional Neural Networks based on Generalized Lehmer and Power Means. <i>Neural Networks</i>, <i>155</i>, 177-203. <a href="https://doi.org/10.1016/j.neunet.2022.08.017" target="_blank">https://doi.org/10.1016/j.neunet.2022.08.017</a>
dc.identifier.otherCONVID_151802598
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/82937
dc.description.abstractConvolutional Neural Network is one of the famous members of the deep learning family of neural network architectures, which is used for many purposes, including image classification. In spite of the wide adoption, such networks are known to be highly tuned to the training data (samples representing a particular problem), and they are poorly reusable to address new problems. One way to change this would be, in addition to trainable weights, to apply trainable parameters of the mathematical functions, which simulate various neural computations within such networks. In this way, we may distinguish between the narrowly focused task-specific parameters (weights) and more generic capability-specific parameters. In this paper, we suggest a couple of flexible mathematical functions (Generalized Lehmer Mean and Generalized Power Mean) with trainable parameters to replace some fixed operations (such as ordinary arithmetic mean or simple weighted aggregation), which are traditionally used within various components of a convolutional neural network architecture. We named the overall architecture with such an update as a hyper-flexible convolutional neural network. We provide mathematical justification of various components of such architecture and experimentally show that it performs better than the traditional one, including better robustness regarding the adversarial perturbations of testing data.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesNeural Networks
dc.rightsCC BY 4.0
dc.subject.otherconvolutional
dc.subject.otherneural network
dc.subject.othergeneralization
dc.subject.otherflexibility
dc.subject.otheradversarial robustness
dc.subject.otherpooling
dc.subject.otherconvolution
dc.subject.otheractivation function
dc.subject.otherLehmer mean
dc.subject.otherPower mean
dc.titleHyper-flexible Convolutional Neural Networks based on Generalized Lehmer and Power Means
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202209054469
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineCollective Intelligencefi
dc.contributor.oppiaineTekniikkafi
dc.contributor.oppiaineCollective Intelligenceen
dc.contributor.oppiaineEngineeringen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange177-203
dc.relation.issn0893-6080
dc.relation.volume155
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 The Author(s). Published by Elsevier Ltd.
dc.rights.accesslevelopenAccessfi
dc.subject.ysosyväoppiminen
dc.subject.ysokoneoppiminen
dc.subject.ysoneuroverkot
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p39324
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.datasethttps://github.com/Adversarial-Intelligence-Group/flexnets
dc.relation.doi10.1016/j.neunet.2022.08.017
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0