Show simple item record

dc.contributor.authorDomínguez-Flores, Fabiola
dc.contributor.authorMelander, Marko M.
dc.date.accessioned2022-09-02T08:47:14Z
dc.date.available2022-09-02T08:47:14Z
dc.date.issued2022
dc.identifier.citationDomínguez-Flores, F., & Melander, M. M. (2022). Electrocatalytic rate constants from DFT simulations and theoretical models : Learning from each other. <i>Current Opinion in Electrochemistry</i>, <i>36</i>, Article 101110. <a href="https://doi.org/10.1016/j.coelec.2022.101110" target="_blank">https://doi.org/10.1016/j.coelec.2022.101110</a>
dc.identifier.otherCONVID_151048395
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/82924
dc.description.abstractElectrochemical interfaces present an extraordinarily complex reaction environment and several, often counter-acting, interactions contribute to rate constants of electrocatalytic reactions. We compile a short review on how electrode potential, solvent, electrolyte, and pH effects on electrocatalytic rates can be understood and modelled using computational and theoretical methods. We address the connections between computational models based on DFT and (semi)analytical model Hamiltonians to extract physical or chemical insights, identify some omissions in present DFT simulation approaches and analytic models, and discuss what and how simulations and models could learn from each other.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesCurrent Opinion in Electrochemistry
dc.rightsCC BY 4.0
dc.subject.othersolvent
dc.subject.otherelectrolyte
dc.subject.otherpH
dc.subject.otherelectrode potential
dc.subject.otherrate constant
dc.titleElectrocatalytic rate constants from DFT simulations and theoretical models : Learning from each other
dc.typereview article
dc.identifier.urnURN:NBN:fi:jyu-202209024457
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineResurssiviisausyhteisöfi
dc.contributor.oppiaineNanoscience Centeren
dc.contributor.oppiainePhysical Chemistryen
dc.contributor.oppiaineSchool of Resource Wisdomen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_dcae04bc
dc.description.reviewstatuspeerReviewed
dc.relation.issn2451-9103
dc.relation.volume36
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 The Author(s). Published by Elsevier B.V.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber338228
dc.subject.ysoliuottimet
dc.subject.ysoelektrodit
dc.subject.ysosähkökemia
dc.subject.ysoelektrokatalyysi
dc.subject.ysotermodynamiikka
dc.subject.ysolaskennallinen kemia
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p20402
jyx.subject.urihttp://www.yso.fi/onto/yso/p14077
jyx.subject.urihttp://www.yso.fi/onto/yso/p8093
jyx.subject.urihttp://www.yso.fi/onto/yso/p38660
jyx.subject.urihttp://www.yso.fi/onto/yso/p14558
jyx.subject.urihttp://www.yso.fi/onto/yso/p23053
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.coelec.2022.101110
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundinginformationThis work was supported by the Academy of Finland through the CompEl project (#338228).
dc.type.okmA2


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0