Näytä suppeat kuvailutiedot

dc.contributor.authorPiccolotto, N.
dc.contributor.authorBögl, M.
dc.contributor.authorMuehlmann, C.
dc.contributor.authorNordhausen, Klaus
dc.contributor.authorFilzmoser, P.
dc.contributor.authorMiksch, S.
dc.date.accessioned2022-08-25T11:46:23Z
dc.date.available2022-08-25T11:46:23Z
dc.date.issued2022
dc.identifier.citationPiccolotto, N., Bögl, M., Muehlmann, C., Nordhausen, K., Filzmoser, P., & Miksch, S. (2022). Visual Parameter Selection for Spatial Blind Source Separation. <i>Computer Graphics Forum</i>, <i>41</i>(3), 157-168. <a href="https://doi.org/10.1111/cgf.14530" target="_blank">https://doi.org/10.1111/cgf.14530</a>
dc.identifier.otherCONVID_150994227
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/82831
dc.description.abstractAnalysis of spatial multivariate data, i.e., measurements at irregularly-spaced locations, is a challenging topic in visualization and statistics alike. Such data are inteGral to many domains, e.g., indicators of valuable minerals are measured for mine prospecting. Popular analysis methods, like PCA, often by design do not account for the spatial nature of the data. Thus they, together with their spatial variants, must be employed very carefully. Clearly, it is preferable to use methods that were specifically designed for such data, like spatial blind source separation (SBSS). However, SBSS requires two tuning parameters, which are themselves complex spatial objects. Setting these parameters involves navigating two large and interdependent parameter spaces, while also taking into account prior knowledge of the physical reality represented by the data. To support analysts in this process, we developed a visual analytics prototype. We evaluated it with experts in visualization, SBSS, and geochemistry. Our evaluations show that our interactive prototype allows to define complex and realistic parameter settings efficiently, which was so far impractical. Settings identified by a non-expert led to remarkable and surprising insights for a domain expert. Therefore, this paper presents important first steps to enable the use of a promising analysis method for spatial multivariate data.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherWiley
dc.relation.ispartofseriesComputer Graphics Forum
dc.rightsCC BY 4.0
dc.subject.othervisualisointitekniikat
dc.subject.othermaantieteellinen visualisointi
dc.subject.otherhuman-centered computing
dc.subject.othervisualization techniques
dc.subject.othergeographic visualization
dc.titleVisual Parameter Selection for Spatial Blind Source Separation
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202208254363
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange157-168
dc.relation.issn0167-7055
dc.relation.numberinseries3
dc.relation.volume41
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysovisualisointi
dc.subject.ysokompleksisuus
dc.subject.ysogeostatistiikka
dc.subject.ysomuuttujat
dc.subject.ysodata
dc.subject.ysoanalyysimenetelmät
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p7938
jyx.subject.urihttp://www.yso.fi/onto/yso/p6340
jyx.subject.urihttp://www.yso.fi/onto/yso/p27841
jyx.subject.urihttp://www.yso.fi/onto/yso/p16708
jyx.subject.urihttp://www.yso.fi/onto/yso/p27250
jyx.subject.urihttp://www.yso.fi/onto/yso/p6085
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1111/cgf.14530
jyx.fundinginformationThis work was funded by the Austrian Science Fund (FWF) under Grant P31881-N32.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0