Näytä suppeat kuvailutiedot

dc.contributor.authorMisitano, Giovanni
dc.contributor.authorAfsar, Bekir
dc.contributor.authorLárraga, Giomara
dc.contributor.authorMiettinen, Kaisa
dc.date.accessioned2022-08-17T06:26:40Z
dc.date.available2022-08-17T06:26:40Z
dc.date.issued2022
dc.identifier.citationMisitano, G., Afsar, B., Lárraga, G., & Miettinen, K. (2022). Towards explainable interactive multiobjective optimization : R-XIMO. <i>Autonomous Agents and Multi-Agent Systems</i>, <i>36</i>(2), Article 43. <a href="https://doi.org/10.1007/s10458-022-09577-3" target="_blank">https://doi.org/10.1007/s10458-022-09577-3</a>
dc.identifier.otherCONVID_151667447
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/82603
dc.description.abstractIn interactive multiobjective optimization methods, the preferences of a decision maker are incorporated in a solution process to find solutions of interest for problems with multiple conflicting objectives. Since multiple solutions exist for these problems with various trade-offs, preferences are crucial to identify the best solution(s). However, it is not necessarily clear to the decision maker how the preferences lead to particular solutions and, by introducing explanations to interactive multiobjective optimization methods, we promote a novel paradigm of explainable interactive multiobjective optimization. As a proof of concept, we introduce a new method, R-XIMO, which provides explanations to a decision maker for reference point based interactive methods. We utilize concepts of explainable artificial intelligence and SHAP (Shapley Additive exPlanations) values. R-XIMO allows the decision maker to learn about the trade-offs in the underlying problem and promotes confidence in the solutions found. In particular, R-XIMO supports the decision maker in expressing new preferences that help them improve a desired objective by suggesting another objective to be impaired. This kind of support has been lacking. We validate R-XIMO numerically, with an illustrative example, and with a case study demonstrating how R-XIMO can support a real decision maker. Our results show that R-XIMO successfully generates sound explanations. Thus, incorporating explainability in interactive methods appears to be a very promising and exciting new research area.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Science and Business Media LLC
dc.relation.ispartofseriesAutonomous Agents and Multi-Agent Systems
dc.rightsCC BY 4.0
dc.subject.otherinteractive methods
dc.subject.othermultiple criteria optimization
dc.subject.otherexplainable artificial intelligence
dc.subject.otherdecision making
dc.subject.otherreference point
dc.titleTowards explainable interactive multiobjective optimization : R-XIMO
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202208174147
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineMultiobjective Optimization Groupfi
dc.contributor.oppiainePäätöksen teko monitavoitteisestifi
dc.contributor.oppiaineComputational Scienceen
dc.contributor.oppiaineMultiobjective Optimization Groupen
dc.contributor.oppiaineDecision analytics utilizing causal models and multiobjective optimizationen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn1387-2532
dc.relation.numberinseries2
dc.relation.volume36
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2022
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber322221
dc.relation.grantnumber311877
dc.subject.ysojohtaminen
dc.subject.ysooptimointi
dc.subject.ysotekoäly
dc.subject.ysokoneoppiminen
dc.subject.ysomonitavoiteoptimointi
dc.subject.ysopäätöksentukijärjestelmät
dc.subject.ysopäätöksenteko
dc.subject.ysointeraktiivisuus
dc.subject.ysometsänkäsittely
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p554
jyx.subject.urihttp://www.yso.fi/onto/yso/p13477
jyx.subject.urihttp://www.yso.fi/onto/yso/p2616
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p32016
jyx.subject.urihttp://www.yso.fi/onto/yso/p27803
jyx.subject.urihttp://www.yso.fi/onto/yso/p8743
jyx.subject.urihttp://www.yso.fi/onto/yso/p10823
jyx.subject.urihttp://www.yso.fi/onto/yso/p27050
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s10458-022-09577-3
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundingprogramResearch profiles, AoFen
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramProfilointi, SAfi
jyx.fundinginformationThis work has been supported by the Academy of Finland (Grant Numbers 311877 and 322221) and the Vilho, Yrjö and Kalle Väisälä Foundation of the Finnish Academy of Science and Letters. This work is a part of the thematic research area Decision Analytics Utilizing Causal Models and Multiobjective Optimization (DEMO, jyu.fi/demo) at the University of Jyväskylä. Open Access funding provided by University of Jyväskylä (JYU).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0