Näytä suppeat kuvailutiedot

dc.contributor.authorYuan, Yaxiong
dc.contributor.authorLei, Lei
dc.contributor.authorVu, Thang X.
dc.contributor.authorChang, Zheng
dc.contributor.authorChatzinotas, Symeon
dc.contributor.authorSun, Sumei
dc.date.accessioned2022-08-16T05:26:15Z
dc.date.available2022-08-16T05:26:15Z
dc.date.issued2022
dc.identifier.citationYuan, Y., Lei, L., Vu, T. X., Chang, Z., Chatzinotas, S., & Sun, S. (2022). Adapting to Dynamic LEO-B5G Systems : Meta-Critic Learning Based Efficient Resource Scheduling. <i>IEEE Transactions on Wireless Communications</i>, <i>21</i>(11), 9582-9595. <a href="https://doi.org/10.1109/TWC.2022.3178171" target="_blank">https://doi.org/10.1109/TWC.2022.3178171</a>
dc.identifier.otherCONVID_150893478
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/82559
dc.description.abstractLow earth orbit (LEO) satellite-assisted communications have been considered as one of the key elements in beyond 5G systems to provide wide coverage and cost-efficient data services. Such dynamic space-terrestrial topologies impose an exponential increase in the degrees of freedom in network management. In this paper, we address two practical issues for an over-loaded LEO-terrestrial system. The first challenge is how to efficiently schedule resources to serve a massive number of connected users, such that more data and users can be delivered/served. The second challenge is how to make the algorithmic solution more resilient in adapting to dynamic wireless environments. We first propose an iterative suboptimal algorithm to provide an offline benchmark. To adapt to unforeseen variations, we propose an enhanced meta-critic learning algorithm (EMCL), where a hybrid neural network for parameterization and the Wolpertinger policy for action mapping are designed in EMCL. The results demonstrate EMCL’s effectiveness and fast-response capabilities in over-loaded systems and in adapting to dynamic environments compare to previous actor-critic and meta-learning methods.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Electrical and Electronics Engineers (IEEE)
dc.relation.ispartofseriesIEEE Transactions on Wireless Communications
dc.rightsCC BY 4.0
dc.subject.otherLEO satellites
dc.subject.otherresource scheduling
dc.subject.otherreinforcement learning
dc.subject.othermeta-critic learning
dc.subject.otherdynamic environment
dc.titleAdapting to Dynamic LEO-B5G Systems : Meta-Critic Learning Based Efficient Resource Scheduling
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202208164103
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingfi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineTekniikkafi
dc.contributor.oppiaineSecure Communications Engineering and Signal Processingen
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineEngineeringen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange9582-9595
dc.relation.issn1536-1276
dc.relation.numberinseries11
dc.relation.volume21
dc.type.versionpublishedVersion
dc.rights.copyright© Authors, 2022
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysolangaton tiedonsiirto
dc.subject.ysoresursointi
dc.subject.ysolangattomat verkot
dc.subject.ysotietoliikennesatelliitit
dc.subject.ysoalgoritmit
dc.subject.ysokoneoppiminen
dc.subject.yso5G-tekniikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p5445
jyx.subject.urihttp://www.yso.fi/onto/yso/p24562
jyx.subject.urihttp://www.yso.fi/onto/yso/p24221
jyx.subject.urihttp://www.yso.fi/onto/yso/p5595
jyx.subject.urihttp://www.yso.fi/onto/yso/p14524
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p29372
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1109/TWC.2022.3178171
jyx.fundinginformationThe work has been supported by the ERC project AGNOSTIC (742648), by the FNR CORE projects ROSETTA (C17/IS/11632107), FlexSAT (C19/IS/13696663), SmartSpace (C21/IS/16193290), and by the FNR bilateral project LARGOS (12173206).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0