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Abstract—Low earth orbit (LEO) satellite-assisted communi-
cations have been considered as one of the key elements in
beyond 5G systems to provide wide coverage and cost-efficient
data services. Such dynamic space-terrestrial topologies impose
an exponential increase in the degrees of freedom in network
management. In this paper, we address two practical issues for
an over-loaded LEO-terrestrial system. The first challenge is how
to efficiently schedule resources to serve a massive number of
connected users, such that more data and users can be deliv-
ered/served. The second challenge is how to make the algorithmic
solution more resilient in adapting to dynamic wireless environ-
ments. We first propose an iterative suboptimal algorithm to
provide an offline benchmark. To adapt to unforeseen variations,
we propose an enhanced meta-critic learning algorithm (EMCL),
where a hybrid neural network for parameterization and the
Wolpertinger policy for action mapping are designed in EMCL.
The results demonstrate EMCL’s effectiveness and fast-response
capabilities in over-loaded systems and in adapting to dynamic
environments compare to previous actor-critic and meta-learning
methods.

Index Terms—LEO satellites, resource scheduling, reinforce-
ment learning, meta-critic learning, dynamic environment.

I. INTRODUCTION

In beyond 5G networks (B5G), the massive number of
connected users and their increasing demands for high-data-
rate services can lead to overloading of terrestrial base stations
(BSs), which in turn results in degraded user experience,
e.g., longer delay in requesting data services or lower data
rate [1]. In order to improve the network performance and
user experience, the integration of satellites, e.g., low earth
orbit (LEO) satellites, and terrestrial systems is considered
as a promising solution to provide cost-efficient data ser-
vices [2]. The solutions for terrestrial network optimization
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and resource management might not be suitable for direct
application to integrated satellite-terrestrial systems [3]. In the
literature, tailored schemes have been investigated to improve
the networks’ performance. In [4], the authors proposed a
user scheduling scheme to maximize the sum-rate and the
number of accessed users by utilizing the LEO-based back-
haul. In [5], a joint power allocation and user scheduling
scheme was proposed to maximize the network throughput in
hierarchical LEO systems with the constraint of transmission
delay. In [6], the authors developed a joint resource block
allocation and power allocation algorithm to maximize the
total transmission rate for LEO systems. It is worth noting
that the resource optimization problems in LEO-terrestrial
networks are typically combinatorial and non-convex. The
conventional iterative optimization methods, e.g., in [4]–[6],
are unaffordable for real-time operations due to their high
computational complexity.

A. Related Works: State-of-the-art and Limitations
Towards an efficient solution, various learning techniques

have been studied. Compared to supervised learning, rein-
forcement learning (RL) learns the optimal policy from ob-
served samples without preparing labeled data. As one of the
promising RL methods, deep reinforcement learning (DRL)
adopts deep neural networks (DNNs) for parameterization and
rapid decision making. Recent works have applied RL/DRL
for resource management in LEO-terrestrial systems [7]–[9].
In [7], to maximize the achievable rate in LEO-assisted relay
networks, a DQN-based algorithm was proposed to make
the online decisions for link association. The authors in [8]
adopted multi-agent reinforcement learning to minimize the
average number of handovers and improve the efficiency
of channel utilization for LEO satellite systems. In [9], the
authors applied an actor-critic (AC) algorithm to LEO resource
allocation, such as beam allocation and power control. The
above RL algorithms in practical LEO systems are limited
by the following issue. That is, the performance of a learn-
ing model largely depends on the data originated from the
experienced samples or the observed environment, but the
wireless environment is highly complex and dynamic. When
network parameters vary dramatically, the performance of the
learning models can be degraded. To remedy this, one has
to re-collect a large number of training data and re-train the
learning models, which is time-consuming and inefficient to
adapt to fast variations [10].
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To address this issue, a variety of studies focus on how to
make the learning models quickly respond to dynamic environ-
ments. Transfer learning applies the knowledge acquired from
a source learning task to a target learning task to speed up
the re-training process and reduce the volume of the collected
new data sets [11]. The performance of transfer learning is
limited by finding correlated tasks. Another approach, joint
learning, aims at obtaining a single model that can be adapted
to dynamic environments by optimizing the loss function
over multiple tasks [12]. Besides, continual learning can also
accelerate the adaptation to the new learning task by adding the
experienced data from the previous tasks to the re-training data
set, thus avoiding completely forgetting previously learned
models [13]. Joint learning and continual learning might have
good learning performance on average but have limited gen-
eralization abilities when different tasks are highly diversified
[14]. In contrast, meta-learning extracts meta-knowledge and
achieves good performance for specific tasks without requiring
the related source tasks. The authors in [15] proposed a
model-agnostic meta-learning algorithm (MAML) to obtain
the model’s initial parameters as meta-knowledge to quickly
adapt to new tasks. In [16], an algorithm combining actor-
critic with MAML (AC-MAML) was developed to learn a
new task from fewer experience data sets. In [17], the authors
proposed a promising meta-critic learning framework with
better performance than conventional AC and AC-MAML. In
[18], a meta-learning-based adaptive sensing algorithm was
proposed, which determines the next most informative sensing
location in wireless sensor networks. In [19], meta-learning
was applied to find a common initialization vector that enables
fast training of an autoencoder for the fading channels. Most
of the meta-learning methods were applied in the areas of
pattern recognition [15], robotics [16], [17], and physical layer
communications [19], which typically address simple learning
tasks with limited action space. However, when the learning
techniques, e.g., DRL, AC-MAML, or meta-critic learning,
are applied to address combinatorial optimization problems
in a dynamic LEO-terrestrial network, the action space can
be huge and the input-output relationships can become more
complex. These may degrade the efficiency of the above
learning methods.

B. Motivations and Contributions

Moving beyond the state-of-the-art, this paper intends to
address the following questions:
• How to make the learning solutions more adaptive to

dynamic LEO-terrestrial networks?
• How to deal with the huge action space and improve the

learning efficiency?
In this study, we design an enhanced meta-critic learning

algorithm (EMCL) to enable efficient resource scheduling for
dynamic LEO-terrestrial systems, and emphasize the solutions
to deal with non-ideal dynamic environments. The major
contributions are summarized as follows:
• We design a tailored metric for over-loaded LEO systems

with dense user distribution, aiming at serving more users
and delivering a higher volume of requested data.

• We formulate the resource scheduling problem as a
quadratic integer programming (QIP) and provide two of-
fline optimization-based benchmarks, i.e., optimal branch
and bound (B&B) algorithm and suboptimal alternating
direction method of multipliers-based heuristic algorithm
(ADMM-HEU).

• Due to the combinatorial nature and the high complexity
of the offline solutions, we solve the problem from the
perspective of DRL by reformulating a Markov decision
process (MDP) to make online decisions with the identi-
cal objective as the original problem.

• To adapt to dynamic environments, we propose an EMCL
algorithm based on a meta-critic framework. Compared
to conventional meta learning, the novelty stems from
that: 1) The critic has good generalization abilities to
evaluate any new task such that the learning agent can
adjust the policy timely when the environment changes;
2) The tailored design of a hybrid neural network extracts
the features from the current and historical samples; 3) the
integrated Wolpertinger policy allows the actor to make
decisions more efficiently in an exponentially increasing
action space.

• We evaluate the proposed EMCL with other benchmarks
in three practical dynamic scenarios, i.e., bursty user
demands, dramatically fluctuated channel states, and user
departure/arrival. The numerical results verify EMCL’s
effectiveness and fast-response capabilities in adapting to
dynamic environments.

The rest of the paper is organized as follows. The system
model is presented in Section II. We formulate a resource
scheduling problem and develop optimal and suboptimal so-
lutions for performance benchmarks in Section III. In Section
IV, we model the problem as an MDP and develop an EMCL
algorithm. Numerical results are demonstrated and analyzed
in Section V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. LEO-Terrestrial Network

In practice, terrestrial BSs can become over-loaded and
congested. This common issue has received considerable atten-
tion from academia, industry, and standardization bodies, e.g.,
3GPP Release 17 [20]. In this work, we address this challeng-
ing issue via developing satellite-aided solutions. As shown in
Fig. 1, the BSs with limited resources might not be able to
serve all the users and deliver all the requested data demands
within a required transmission or queuing delay. To relieve the
burden of the terrestrial BSs, LEO satellites are introduced to
offload traffic from BSs or provide backhauling services. The
LEO employs a transparent payload. For spectrum usage, the
system keeps consistent with currently deployed space and
ground systems. That is, the LEO satellites operate at the Ka-
band to provide broadband services to advanced terminals,
e.g., equipped with very small aperture terminals (VSAT),
while the 5G terrestrial system adopts sub-6GHz at the C-
band to serve normal mobile devices, e.g., smartphones [21].

We consider two types of mobile terminals (MTs) in the
system. The first type is the normal cellular terminals, e.g.,
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Fig. 1. An illustrative LEO-terrestrial communication system

cell phones, that can be served by BSs or terrestrial-satellite
terminals (TSTs), but cannot be served by LEO due to the
size limitation of dish antennas. The other is the dual-mode
terminals, e.g., vehicular terminals, which are equipped with a
3GPP terrestrial-non-terrestrial network (TN-NTN) compliant
dual-mode that can be either served by LEO via Ka-band (in
rural areas) or by BS/TST through C-band (in urban areas)
[22]. Compared to conventional cellular BS, TST is a small-
size terminal that acts as a flexible and cost-saving access
point, e.g., Starlink ground terminals. A TST can receive
backhauling services from LEO over Ka-band and transmit
data to MTs over C-band [4]. The terrestrial BSs can request
data from the core network through optical fiber links or from
the LEO satellites through the BS-LEO link. We remark that
Fig. 1 can be extended to a large-scale network with a massive
number of MTs. Specifically, an MT in Fig. 1 can represent a
cluster of densely-deployed devices. Due to the proximity, the
channel states of the devices within a cluster can be assumed
identical. When a cluster is scheduled, all the devices within
the cluster will be scheduled by the TDMA (or FDMA) mode
to avoid intra-cluster interference.

We denote S,B,M and L as the set of TSTs, BEs, MTs,
and LEOs, respectively, where M is the union of set M1

(all the cellphone MTs) and M2 (all the dual-mode MTs).
Thus, the union of receivers, i.e., ground devices (GDs), can
be expressed as K = S ∪ B ∪M = {1, ..., k, ...,K}, where
K = |S| + |B| + |M|. Similarly, the union of transmitters is
written by N = S ∪ B ∪ L = {1, ..., n, ..., N}, where N =
|S|+ |B|+ |L|. The time domain is divided by time slots, i.e.,
T = {1, ..., t, ..., T}. In data transmission, each transmitter
n serves a GD in unicast mode, i.e., no joint transmission
and no multi-cast transmission. Within a time slot, multiple
transmitter-GD links can be activated, forming a link group.
We denote G = {1, ..., g, ..., G} as a set by enumerating all
the valid link groups.

To coordinate the link scheduling between terrestrial and
satellite parts, a centralized controller is deployed in the system
[23]. With the centralized controller, the information from the
ground and satellite can be collected and exchanged, which
facilitates the implementation of scheduling decisions. In addi-

tion, efficient synchronization approaches can be implemented
on the transmitters and receivers to guarantee that the resource
scheduling updates are performed accurately in LEO satellite
systems [24].

B. Channel Modeling

We consider time-varying channels for both satellite and
terrestrial communication. At time slot t, the channel state
between receiver k and transmitter n can be modeled as:

hk,n,t =

{
G

(T )
leo ·G

(C)
k,n,t ·G(R), n ∈ L,

G
(T )
ter ·G

(C)
k,n,t ·G(R), n ∈ N \L,

(1)

where G(T )
leo and G

(T )
ter are the transmit antenna gain of LEO

and terrestrial BS/TST, respectively. We assume that all the
GDs are equipped with a single receiving antenna, so that their
receive antenna gains G(R) are uniform. G(C)

k,n,t represents the
channel fading between transmitter n and GD k at time slot t.
For LEO-to-GD channel, a widely used channel fading model
in [4], [6], [25] is adopted, which includes free-space path loss,
pitch angle fading, atmosphere fading, and Rician small-scale
fading:

G
(C)
k,n,t =

(
c

4πdk,n,tfleo

)2

·G(P )
k,n ·A(Ω) · ϕ, (2)

where c is the speed of light, dk,n,t is the propagation distance
between LEO and the terminals, fleo is the carrier frequency
of LEO, G(P )

k,n is the pitch angle fading gain, and ϕ is the
Rician fading gain. The atmospheric fading gain A(Ω) is the
function of the angle Ω, where sin Ω = H/dk,n,t, and H is
the altitude of LEO.

A(Ω) = 10( 3χ
10 sin Ω ), (3)

where χ, in dB/km, is the attenuation through the clouds
and rain. In downlink transmission, we assume that Doppler
shift caused by the high mobility of LEO can be perfectly
pre(post)-compensated in the gateway based on the predictable
satellite motion and speed [26]. For terrestrial channels, i.e.,
TST/BS-to-MT, G(C)

k,n,t consists of the path loss and Rayleigh
small-scale fading [27], which is given by:

G
(C)
k,n,t =

(
c

4πdk,n,tfter

)2

· φ, (4)

where fter is the carrier frequency of TST/BS and φ is the
Rayleigh fading factor.

Based on the adopted channel fading models (2) and (4),
we further model the time-varying channel as the finite state
Markov channel (FSMC) to capture the time-correlation char-
acteristics and conduct mathematically tractable analysis. To
form an FSMC, we first discretize the channel state hk,n,t
into L levels, i.e., H = {h1, ..., hL}, where the thresholds
hl, ..., hL are determined by the equal-probability method [28].
Then the transition probability matrix is defined as:

P =

 P1,1 · · · P1,L

...
. . .

...
PL,1 · · · PL,L

 , (5)
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where the transition probability Pl,l′ can be written as:

Pl,l′ = Prob [hk,n,t+1=hl′ |hk,n,t=hl] , hl, hl′ ∈ H. (6)

That is, at a given time slot t, if hk,n,t = hl, Pl,l′ refers to
the probability of channel state at the next time slot hk,n,t+1

transiting from hl to hl′ , which can be approximated by the
ratio between the level crossing rate and the average number
of symbol per second [28].

C. Optimization Problem

We formulate a resource scheduling problem for the consid-
ered over-loaded LEO-5G systems. We use binary indicators
αk,n,g to represent the activated links in group g ∈ G, where
αk,n,g = 1 if the transmitter-GD link (n, k) is included in
group g and will be activated when group g is scheduled, oth-
erwise, 0. Set G and indicators αk,n,g are the necessary input
parameters for the optimization problem P1. Following the
principles in (7)-(10), we enumerate valid links and candidate
groups. In implementation, every enumerated link or group
will undergo a feasiblity-check step to ensure that no links or
groups violate (7)-(10).

αk,n,g = 0, ∀k ∈ K\M,∀n ∈ N \L,∀g ∈ G, (7)
αk,n,g = 0, ∀k ∈M1, ∀n ∈ L, ∀g ∈ G, (8)∑

n∈N
αk,n,g ≤ 1, ∀k ∈ K,∀g ∈ G, (9)∑

k∈K
αk,n,g ≤ 1, ∀n ∈ N ,∀g ∈ G. (10)

(7) and (8) exclude certain types of links, i.e., BS-BS,
TST-TST, BS-TST, TST-BS, and LEO-cellphone. (9) means
that each GD k in group g receives data from at most one
transmitter, and (10) represents each transmitter n in group g
serves no more than one GD. For example, consider a simple
system with 1 LEO, 1 TST, 1 BS, and 2 MTs (an MT1 in
M1, and an MT2 in M2). There are four possible receivers,
i.e., TST, BS, MT1, and MT2, indexed by K = {1, 2, 3, 4},
respectively, and three possible transmitters, i.e., TST, BS,
and LEO, indexed by N = {1, 2, 3}. Filtered by (7)-(8),
all the valid links are (1, 3) (TST to MT1), (1, 4) (TST to
MT2), (2, 3) (BS to MT1), (2, 4) (BS to MT2), (3, 1) (LEO
to TST), (3, 2) (LEO to BS), and (3, 4) (LEO to MT2).
Confined by (9)-(10), a combination of the above links can
be a valid group g, e.g, a group {(3, 4), (1, 3)} contains
two links. Enumerating all the valid groups forms set G =
{{(1, 3), (2, 4)}, {(1, 3), (3, 4)}, ....., {(1, 3), (2, 4), (3, 1)}},
which is served as the input set for decision making. Note
that filtered by constraints (7)-(10), a large number of
invalid links and groups have been excluded. For even larger
networks, we remark that a full enumeration of groups might
be unaffordable in implementation. To deal with this issue,
some heuristic enumeration approaches can be adopted in
pre-process stage to reduce the complexity to an affordable
level [29].

Confined by (7) and (8), the SINR and the volume of
transmitted data of GD k in group g at time slot t are expressed

in (11) and (12), respectively.

γk,g,t =

∑
n∈L hk,n,tαk,n,gpk,g∑

j∈K\k
∑
n∈L hj,n,tαj,n,gpk,g + σ2

+

∑
n∈N\L hk,n,tαk,n,gpk,g∑

j∈K\k
∑
n∈N\L hj,n,tαj,n,gpk,g + σ2

, (11)

and

Rk,g,t = ΦBk,g log2(1 + γk,g,t), (12)

where pk,g is the transmit power to GD k in group g and Φ is
the duration of each time slot. We denote Bleo and Bter are
the fixed bandwidth for LEO and BS/TST, respectively, such
that the used bandwidth Bk,g for GD k in group g can be
calculated by Bleo

∑
n∈L αk,n,g + Bter

∑
n∈N\L αk,n,g . We

define the decision variables as x = [x1,1, ..., xg,t, ..., xG,T ]
where

xg,t =

{
1, if group g is scheduled at time slot t,
0, otherwise.

In a practical over-loaded scenario, not all the terminals can
be timely served and their actual demands may not be fully
delivered in time due to massive access requests competing
for limited resources. Under this undesirable scenario, the
optimization task may shift from “serving all the terminals
and satisfying all the demands” to “serving as many terminals
(and their demands) as possible”. On this basis, we denote
Dk and D′k(< Dk) as the actual demand (in bits) and the
threshold, respectively. In the objective design, we consider
a composite utility function in (13), and define that GD k is
served, i.e., fk(x) = 1, when a threshold D′k is satisfied.

fk(x) =1

∑
t∈T

∑
g∈G

Rk,g,txg,t −D′k

 , (13)

where 1(·) is an indicator function such that 1(β) ={
1, if β > 0
0, if β ≤ 0

. We introduce a threshold D′k in (13) since

in an over-loaded scenario with densely deployed users, the
system may not be able to satisfy all the actual demand Dk

within one scheduling cycle. In implementation, we predefine
D′k = εDk, where 0 ≤ ε ≤ 1. The value of ε is selected from
the middle segment of [0, 1] to avoid too high or low value,
such that D′k has a considerable impact on the optimization
results and the trade-off effect.

We convert the non-linear function fk(x) to a linear function
by introducing auxiliary variables y = [y1, ..., yk, ..., yK ] and
linear constrains (14d), where yk = fk(x). The optimization
problem is formulated as:

P1 : min
xg,t,yk

f(x, y) = η0

(∑
k∈K

yk −K

)2

+

∑
k∈K

ηk

∑
t∈T

∑
g∈G

Rk,g,txg,t −Dk

2

(14a)

s.t. γ̄k − γk,g,t ≤ V

(
1− xg,t

∑
n∈N

αk,n,g

)
,
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∀k ∈ K, g ∈ G, t ∈ T , (14b)∑
g∈G

xg,t ≤ 1, ∀t ∈ T , (14c)

D′kyk ≤
∑
t∈T

∑
g∈G

Rk,g,txg,t, ∀k ∈ K, (14d)

xg,t ∈ {0, 1}, ∀g ∈ G, t ∈ T , (14e)
yk ∈ {0, 1}, ∀ k ∈ K, (14f)

where γ̄k is the SINR threshold of GD k, V is a positive
sufficiently large value, and η0, ..., ηK are the weight factors.
Considering the users’ fairness and resource utilization in
an over-loaded system, we design a tailored utility function
(14a) consisting of two components. The first term encourages
serving more users and meeting their minimum requirement
D′k since satisfying low-traffic users are more likely to have
rewards in the objective. The second term aims at minimizing
the supply-demand gap such that the scheduler tends to
serve the users with higher demand Dk or higher weights
ηk (k = 1, ...,K). The priority or importance of the two
parts can be adjusted by pre-defined weight values according
to different scenarios. For example, when a large number of
delay-sensitive and low-traffic users enter the network, the
scheduler may give more priority by increasing η0 to serve
this type of users as many as possible, while the delay-tolerate
services with high data demand may have lower priority (with
decreased ηk) in this scheduling cycle.
• The constraints (14b) represent the SINR requirement in

practical satellite and 5G systems. If GD k in group g is
scheduled at time slot t, i.e., xg,t

∑
n∈N αk,n,g = 1, the

SINR of GD k should be higher than the threshold γ̄k to
guarantee the link quality. This also implies that schedul-
ing many links with strong co-channel interference may
not be a wise option in the optimal solution. The setting
of γ̄k refers to the standard of DVB-S2X [31] and 3GPP
Release 16 [32].

• The constraints (14c) represent no more than one group
can be scheduled in a time slot.

• In constraints (14d), we define that if GD k is served,
i.e., yk = 1, the received data should be larger than D′k.

III. CHARACTERIZATION ON SOLUTION DEVELOPMENT

In this section, we propose an optimal method and a
heuristic approach as the offline benchmarks for small-medium
and large-scale instances, respectively. In addition, we outline
conventional online-learning solutions and their limitations.

A. The Proposed Optimal and Sub-optimal Solutions

Towards the optimum of P1, we first identify the convexity
of P1 when the binary variables are relaxed.

Lemma 1. The relaxation problem of P1 is convex.

Proof. See Appendix A.

Based on Lemma 1, we conclude that P1 is an integer
convex optimization problem. The optimum can be obtained
by B&B that solves a convex relaxation problem at each
node, with the complexity O(2G×T+K) [33]. Although the

complexity increases exponentially, the B&B-based approach
can provide a performance benchmark at least for small-
medium instances.

To reduce the complexity in solving large-scale problems,
we develop a suboptimal algorithm. We observe that P1 has
a variable-splitting structure, which motivates the develop-
ment of ADMM based approaches [34]. The algorithm is
summarized in Alg. 1, first solving the convex relaxation
problem of P1 based on ADMM (in lines 2-8), followed
by a rounding operation (in lines 9-13). In ADMM, we
divide the relaxed variables into T + 1 blocks x̂1, ..., x̂T , ŷ,
where x̂t = [x̂1,t, ..., x̂G,t], and introduce auxiliary variables
z = [z1, ..., zK ], where

zk = D′kŷk −
∑
g∈G

∑
t∈T

Rk,g,tx̂g,t,∀k ∈ K. (15)

The inequality constraints (14d) are replaced by:

zk ≤ 0, ∀k ∈ K. (16)

The augmented Lagrangian function is expressed as:

L(x̂1, ..., x̂T , ŷ, z,λ)

=f(x̂, ŷ) +
∑
k∈K

λk

zk −D′kŷk +
∑
g∈G

∑
t∈T

Rk,g,tx̂g,t


+
ρ

2

∑
k∈K

‖zk −D′kŷk +
∑
g∈G

∑
t∈T

Rk,g,tx̂g,t‖2, (17)

where ρ > 0 is the penalty parameter and λ = [λ1, ..., λK ] are
the lagrangian multipliers. We define Iiter as the total number
of iterations of the algorithm. In each iteration i, ADMM
updates each variable block as follows (in line 5) and update
multipliers (in line 6):

x̂i+1
t = argmin

x̂t∈Xt
L(x̂i1, ..., x̂

i
T , ŷ

i, zi,λi), ∀t ∈ T , (18)

ŷi+1 = argmin
ŷ∈Y

L(x̂i1, ..., x̂
i
T , ŷ

i, zi,λi), (19)

zi+1 = argmin
z∈Z

L(x̂i1, ..., x̂
i
T , ŷ

i, zi,λi), (20)

where Xt = {xt|(14b), (14c), (14d)}, Y = {y|0 ≤ yk ≤ 1}
and Z = {z|zk ≤ 0}. When ADMM terminates, the continu-
ous solution x̂g,t is obtained in line 8. The rounding process
is then carried out in lines 10-13 to convert the largest x̂g,t in
each time slot to 1 (selecting the most promising group g for
each t) and keep others 0.

The developed ADMM-HEU can provide sub-optimal
benchmarks within an acceptable time span, since the subprob-
lems in (18)-(20) can be solved in a parallel manner and with a
smaller size than the original problem. However, ADMM-HEU
requires O(1/ε2) iterations to achieve ε-optimality, where ε
is set as µ

T (T+3) [35]. At each iteration, we can solve the
T + 2 variable blocks by B&B with the time complexity of
O(T · 2G + 2 · 2K). Thus, the total complexity is given by
O(T 5 · 2G + T 4 · 2K), which might not sufficient for fast
adaptation to network variations.
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Algorithm 1 ADMM-HEU

1: input: Dk, D′k and Rk,n,t.
2: Relax P1 to a continuous problem P1′.
3: Initialize x̂0

t , ŷ0, z0, λ0 and i = 0.
4: for i = 0, ..., Iiter do
5: Update x̂t, ŷ and z by Eq. (18), (19) and (20).

6: λi+1
k = λi

k + ρ

(
zik −D′kŷik +

∑
g∈G

∑
t∈T

Rk,g,tx̂
i
g,t

)
.

7: end for
8: Obtain relaxed solution x̂g,t.
9: for t ∈ T do

10: Find g† = argmax
g∈G

{x̂1,t, ..., x̂G,t}.

11: Set x∗g†,t = 1 and x∗g,t = 0, ∀g 6= g†.
12: end for
13: Calculate y∗k based on Eq. (13).
14: output: x∗g,t and y∗k

B. Conventional Online-Learning Solutions and Limitations

To enable an intelligent and online solution, we address the
problem from an RL perspective. Firstly, we briefly introduce
actor-critic and meta-critic learning approaches as a basis to
present the proposed EMCL. AC is an RL algorithm that takes
advantage of both value-based methods, e.g., Q-learning, and
policy-based methods, e.g., REINFORCE, with fast convergent
properties and the capability to deal with continuous action
spaces [36]. The learning agent in AC contains two com-
ponents, where the actor is responsible for making decisions
while the critic is used for evaluating the decisions by the value
functions. Specifically, at each learning step t1, the actor takes
action based on a stochastic policy, i.e., at ∼ π(a|st), where
π(a|st) is the probability of taking an action under state st,
typically following the Gaussian distribution [37]. The critic
is to generate a Q-value function Q(st, at) = Eπ[r̄t|st, at],
where r̄t is the accumulated reward at step t, and Eπ[β] is
the expected value of β over the policy π. The goal of the
learning agent is to find a policy to maximize the expected
accumulated reward (or Q-value).

A critical issue in conventional learning approaches, includ-
ing AC, is that the performance of a learning model largely
depends on the adopted training or observed data sets. To il-
lustrate the dynamic environment and its impacts, we consider
two types of environmental changes. The first is “foreseen
variations”. A typical example is a time-varying channel with
certain time correlation and statistical characteristics. In this
case, a general machine learning algorithm can capture the
regular patterns effectively to resolve the mapping from the
environment to the desired decision variables. The second is
“unforeseen variations”, which is much more challenging to
address. These changes are usually unexpected and inclined to
break the statistical distribution of the original environment.
The practical LEO-5G systems are highly complex and dy-
namic, such as fast and dramatic variations in channel states,
user demands, user arrival/departure, and network topologies.
This typically causes the new inputs to no longer be relevant
to the statistical properties of the historical data [38]. As a
consequence, the scheduling decisions made from the previous

1In this paper, a learning step corresponds to a time slot.

learning model can become invalid and the model may need
to be re-trained to adapt to the new environment. To illustrate
this impact, we use Fig. 2, as an example, to depict a typical
evolution of AC’s loss value over time-varying demands.
From 0 to 100 time slots, the demand is time-varying but
follows historical statistical properties, e.g., fluctuating within
a certain range or following a certain distribution, leading to
a well-adapted AC with low and stable loss values. When a
surged demand is generated at the 100-th time slot, the new
input deviates from the statistics. The AC model becomes
inapplicable to the new environment, evidenced by the rapidly
deteriorating loss values. When the agent in AC consumes a
considerable amount of time in new data collection and re-
training, the performance can return to the previous level.
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Fig. 2. Evolution of loss over time-varying demands.

To address this issue of “unforeseen change”, meta-critic-
based approaches become an emerging technique that takes
advantage of a variety of previously observed tasks to infer
the meta-knowledge, such that a new learning task can be
quickly trained with few observations [15]. Meta-critic learn-
ing combines meta-learning with an AC framework to enhance
the generalization ability. However, conventional meta-critic
learning is not effective in dealing with the large discrete space
in P1. In addition, there is no uniform standard to parameter-
ize the learning model and extract meta-knowledge in dynamic
environments. Thus, we propose an EMCL algorithm to enable
an efficient dynamic-adaptive solution.

IV. THE PROPOSED EMCL ALGORITHM

In this section, we elaborate the proposed EMCL algorithm,
firstly starting from outlining the EMCL framework, then
detailing the tailored design.

A. EMCL Framework

1) MDP Reformulation: First, we reformulate the original
problem P1 as an MDP by defining action, state and reward.
• As the actor is to select a group from set G at each time

slot t, the action is defined as an assigned link group,

at = g ∈ G. (21)

• The state consists of the channel coefficients hk,n,t,
modeled as FSMC with the transition probability defined
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in (6), and the delivered data for user k up to time slot
t, where bk,t = bk,t−1 +Rk,at,t.

st = {h1,1,t, ..., hK,N,t, b1,t, ..., bK,t}. (22)

All possible states are included in the state space S. The
next state only depends on the current state and action but
is irrelevant to the past, which means the state transition
from st to ss+1 follows the Markov property [36].

• The reward is closely related to the objective of P1. We
define the reward as (23).

rt =

K∑
k=0

ηk(∆2
k,t−1 −∆2

k,t), (23)

where ∆k,t =


K∑
k=1

1 (bk,t −D′k)−K, k = 0,

bk,t −Dk, k 6= 0.
Then, the accumulated reward at step t is given by
r̄t =

∑T
t′=t γ

t′−trt′ , where γ ∈ [0, 1] is a discounted
factor.

Under the designed MDP, we verify the consistency between
the goals of the RL algorithm and the original optimization
problem such that the policy provided by the learning agent
can minimize the objective in P1.

Lemma 2. When γ = 1, the objective of the learning agent
is equivalent to that of the optimization problem P1.

Proof. See Appendix B

2) Meta Critic and Task-Specific Actor: As shown in Fig.
3, we design a hierarchical structure in EMCL containing
a meta critic2 and multiple actors. Meta-learning uses data
from previously observed multiple tasks, J (1), ...,J (I), to
infer a “meta-knowledge” with good generalization ability and
accelerate the training for a new task. In the proposed EMCL,
the “meta-knowledge” is the meta critic which can evaluate the
task with a Q-value, like the role of the critic in traditional
AC, and possesses a strong generalization ability to guide any
task-specific actor to provide a policy.

At time step t, s(i)
t , a(i)

t , and r
(i)
t represent the state,

action, and reward for task i, respectively. An episode
D(i) = {s(i)

1 , a
(i)
1 , r

(i)
1 ..., s

(i)
T , a

(i)
T , r

(i)
T } can be sampled from

the first step to the terminal step T . We denote D(i)
[u,w]

as a segment of D(i) from step u to w, i.e., D(i)
[u,w] =

{s(i)
u , a

(i)
u , r

(i)
u , ..., s

(i)
w , a

(i)
w , r

(i)
w }. Since the explicit meta critic

and actors are difficult to obtain, we adopt the func-
tion approximation method. The meta critic is parameter-
ized as a neural network (NN) with the weights ω, i.e.,
Q(s

(i)
t , a

(i)
t ,D(i)

[t−t̄,t−1];ω). We note that, in addition to s
(i)
t

and a
(i)
t , the input includes the most recent t̄ samples

D(i)
[t−t̄,t−1]. Each task-specific actor is modeled as an NN

π(a|s(i)
t ;θ(i)) with the weights θ(i).

To optimize the weights, we minimize the loss functions by
gradient descent. The loss function of the meta critic L(ω) is

2In this paper, “meta-critic learning” refers to an algorithm that combines
AC and meta-learning while “meta critic” refers to the critic in the framework.
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Fig. 3. The proposed EMCL framework.

defined as the average temporal difference (TD) error over all
tasks:

L(ω) =
1

I

I∑
i=1

Eπ(θ(i))

[
(Q(s

(i)
t+1, a

(i)
t+1,D

(i)
[t−t̄+1,t];ω)− rt

−γQ(s
(i)
t , a

(i)
t ,D(i)

[t−t̄,t−1];ω)
]2
, (24)

where the TD error reflects the similarity between the esti-
mated Q-value and actual Q-value. For the task-specific actor,
the loss function J(θ(i)) is the negative Q-value:

J(θ(i)) = Eπ(θ(i))

[
−Q(s

(i)
t , a

(i)
t ,D(i)

[t−t̄,t−1];ω)
]
, (25)

such that minimizing J(θ(i)) is equivalent to maximizing the
expected accumulated reward. The update rules are given by:

ωt+1 =ωt − ρ∇ωL(ω), (26)

θ
(i)
t+1 =θ

(i)
t − ρ∇θ(i)J(θ(i)). (27)

Based on the fundamental results of the policy gradient
theorem [36], the gradients of L(ω) and J(θ(i)) are:

∇ωL(ω) =
1

I

I∑
i=1

[
2L(ω)∇ω(Q(s

(i)
t+1, a

(i)
t+1,D

(i)
[t−t̄+1,t];ω)

−Q(s
(i)
t , a

(i)
t ,D(i)

[t−t̄,t−1];ω))
]
, (28)

∇θ(i)J(θ(i)) = −Q(s
(i)
t , a

(i)
t ,D;ω)∇θ(i) log π(a|s(i)

t ;θ(i)).
(29)

3) Algorithm Summary: We summarize the proposed
EMCL in Alg. 2, which includes two phases: the meta training
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phase and the online learning phase. For the former, the
meta critic is trained over different learning tasks. At each
learning episode, we sample I learning tasks. We obtain the
approximated Q-value (in line 6) and stochastic policy (in
line 7) by the approximation functions. The final actions are
determined by the Wolpertinger approach in line 8, which
will be elaborated in the following subsection. In line 9,
the memory is used to store the experienced learning tuples
{s(i)
t , s

(i)
t+1, a

(i)
t , r

(i)
t }. At each step, we extract a batch of

tuples from the memory as the training data for updating ω
and θ(i) by (26) and (27) in line 10 and 12, respectively. In
the online learning phase, given a new task, the well-trained
meta critic ω∗ can be directly used to estimate the Q-value
and only the actor needs to be re-trained. We note that the
adaptation ability of the meta-learning algorithm depends on
the completeness of the tasks provided in the meta-training
phase. In general, it is not practical to collect all the possible
environments. As an alternative, the selected tasks in the meta-
training phase should keep the diversity and representativeness
to achieve higher sampling efficiency.

Algorithm 2 EMCL
Meta training phase:

1: input: Multiple task samples; initial ω0.
2: for each learning episode do
3: Sample I tasks and initialize ω0,θ

(1)
0 , ...,θ

(I)
0 .

4: for each learning step t do
5: for each task i do
6: Obtain Q-value by the meta critic in (32).
7: Obtain stochastic policy by the actor in (34).
8: Take actions a(i)t by the Wolpertinger approach.
9: Store tuples {s(i)t , s

(i)
t+1, a

(i)
t , r

(i)
t } in the memory.

10: Take a batch of data and update θ(i) by (27).
11: end for
12: Update ω by (26).
13: end for
14: end for
15: output: The well-trained meta critic ω∗.
Online learning phase:
16: input: A new task; initial θ0; well-trained meta critic ω∗.
17: for each learning episode do
18: for each learning step t do
19: Obtain Q-value by the meta critic in (32).
20: Obtain stochastic policy by the actor in (34).
21: Take an action at by the Wolpertinger approach.
22: Store tuples {st, st+1, at, rt} in the memory.
23: Take a batch of data and update θ by (27).
24: end for
25: end for
26: output: The optimal actor θ∗.

B. Tailored Designs in EMCL

1) Parameterization with Hybrid Neural Networks: There
is no uniform standard for parameterization in conventional
meta-critic learning. Considering dynamic environments, the
distribution of the new input data and the previous observations
may deviate. Towards fast adaptation to the dynamic environ-
ment, the critic should be able to identify different tasks, where
the information for task identification can be refined from the
experienced data, which usually forms time-related series [17].

The widely used DNN might have limitations in efficiency and
in mining features from time-series data due to the massive
number of weights and feed-forward structure. In the proposed
EMCL, we design tailored neural networks to enable the meta
critic and the actors to fit the complex nonlinear relationships
and extract the meta-knowledge from historical data.

As shown in Fig. 3, for the meta critic, a hybrid neural net-
work (HNN) combing convolutional neural network (CNN),
long-short term memory (LSTM), and artificial neural network
(ANN) is applied to learn the features from the current state-
action pairs and historical trajectories [39]. Thereinto, CNN is
computation-efficient via adopting the parameter sharing and
pooling operations, and is effective to extract spatial features
from the input data. These advantages enable CNN to reduce
the parameters of the model and alleviate the problem of
overfitting. LSTM, as a type of recurrent neural network, has
advantages in extracting features from time-related sequential
data. Thus, in the designed meta critic, the CNN is used to
evaluate the decisions made by the actor from the current
action-state pair s(i)

t , a
(i)
t . The LSTM is adopted to identify

the task based on the time-series data D(i)
[t−t̄,t−1], such that

the meta critic can accurately criticize any actor in changing
environment and adapt to the dynamic networks. We denote
fcnn(x;w), flstm(x;w) and fann(x;w) as the outputs of
CNN, LSTM, and ANN, respectively, which are the functions
of input x and weight w. The features output from CNN and
LSTM are:

ξ1 =fcnn(s
(i)
t , a

(i)
t ;ωcnn), (30)

ξ2 =flstm(D(i)
[t−t̄,t−1];ωlstm), (31)

where ξ1 and ξ2 physically mean the general Q-value and
the task identification embedding, respectively, which can be
represented by scalars [17]. Then, we take the features as
inputs and pass them through a fully-connected ANN to obtain
the task-specific Q-value:

Qπ(s
(i)
t , a

(i)
t ,D(i)

[t−t̄,t−1];ω) = fann(ξ1, ξ2;ωann). (32)

For the task-specific actors, we adopt CNN as the approxima-
tor which takes the current state as the input and outputs the
mean µ and variance ϑ2 of the stochastic policy. We assume
the stochastic policy follows Gaussian distribution N(µ, ϑ2),
such that

[µ, ϑ2] = fcnn(s
(i)
t ;θ(i)), (33)

π(a|s(i)
t ;θ(i)) = N(µ, ϑ2). (34)

2) Action Mapping with the Wolpertinger Policy: The de-
cision variables in P1 are discrete such that we need to map
the action from the stochastic policy to a discrete action space.
However, the previous action mapping policies in meta-critic
learning are not efficient since the action space is large for
P1. Thus, in EMCL, the Wolpertinger policy is adopted for
faster convergence [40].

Following the stochastic policy π, the actor first produces
an action â with continuous value, i.e.,

fπ : S → Â, fπ(s) = â, (35)
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where fπ is a mapping from the state space S to a continuous
action space Â under the policy π. As the real action space G
is discrete in P1, the following two conventional approaches
can be used for discretization [36]:
• Simple approach: a∗s = argmin

a∈G
|a− â|2.

• Greedy approach: a∗g = argmax
a∈G

Q(s, a).

The simple approach is to select the closest integer value to
â. This approach may result in a high probability of deviating
from the optimum, especially at the beginning of learning, and
further lead to slow convergence [36]. The greedy approach
optimizes Q-value at each step but the complexity is propor-
tional to the exponentially increasing space G [36]. To achieve
a trade-off between the complexity and learning performance,
the Wolpertinger mapping approach is considered.
• Wolpertinger approach: a∗w = argmax

a∈M∗
Q(s, a),

where M∗ is a subset of G and contains M nearest neigh-
bors of â. In the Wolpertinger approach, the final action is
determined by selecting the highest-scoring action from M∗.
The Wolpertinger mapping becomes the greedy approach and
simple approach when M = |G| and M = 1, respectively, and
the solution of simple approach a∗s is included in M∗.

Lemma 3. We assume M∗ = {a1, ..., aM} and{
Q(s, am) ∼ U(Q(s, a∗s)− κ,Q(s, a∗s) + κ), m 6= m′

Q(s, am) = Q(s, a∗s), m = m′,
where U(a, b) refers to uniform distribution and κ is a
constant, then

E [Q(s, a∗w)] = Q(s, a∗s) + κ

(
1− 2(2M − 1)

M · 2M

)
. (36)

Proof. See Appendix C

From Lemma 3, when M > 1, E [Q(s, a∗w)] > Q(s, a∗s),
which means that the Wolpertinger approach finds the actions
with higher Q-values than the simple approach at each learning
step, and a larger M leads to a higher expected Q-value.
In addition, the complexity of the Wolpertinger approach is
lower than the greedy approach as the size of the searching
space decreases from |G| to |M∗|. Thus, for the problems with
huge discrete spaces, the Wolpertinger approach enables fast
convergence to the maximum Q-value with a proper M .

C. Complexity Analysis for EMCL

For the meta critic, an HNN, composed of CNN, LSTM,
and ANN, is employed to estimate the Q-value. We assume
CNN includes V1 convolutional layers. We denote oc,v , ok,v ,
of,v are the number of convolutional kernels, the spatial size
of the kernel, and the spatial size of the output feature map in
the v-th layer, respectively. The stripe of kernel is 1, and the
input size is oc,0 = K(N + 1) + 1. The time complexity of
CNN is O

(∑V1

v=1 oc,v−1%v

)
, where %v = o2

k,voc,vo
2
f,v [41].

For the LSTM, we consider V2 layers, and denote ol,v and
oe,v are the input size and number of memory cells for layer
v, respectively, where ol,0 = m(K(N + 1) + 1). The time
complexity is given by O

(∑V2

v=1 oe,v(4ol,v−1 + ςv)
)

, where
ςv = 4oe,v + ol,v + 3 [42]. For the fully-connected ANN, the

time complexity is O
(

2od,1 +
∑V3

v=2 od,v−1od,v

)
, where V3

is the number of layers of ANN, od,v is the input size for
layer v [43]. For the actor, as the stochastic policy is approx-
imated by a CNN, the time complexity is identical to that
of CNN in the meta critic. Overall, the total time complexity
of EMCL is calculated by O (TK(N + 1)L1 + L2), where
L1 = %1 + 4moe,1 and L2 = %1 + oe,1(4m + ς1) + 2od,1 +∑V1

v=2 oc,v−1%v+
∑V2

v=2 oe,v(4ol,v−1 +ςv)+
∑V3

v=2 od,v−1od,v .
When the parameters of the learning model are determined,
the complexity increases linearly with P1’s input size, i.e., K
and N .

V. NUMERICAL RESULTS

In the simulation, the adopted parameters for implementing
EMCL are summarized in Table I. We compare the perfor-
mance of the proposed EMCL algorithm with the following
five benchmark algorithms:
• OPT: optimal solution (B&B).
• ADMM-HEU: suboptimal solution (Alg. 1).
• GRD: a greedy suboptimal algorithm proposed in [44].
• AC-DDPG: a classic AC algorithm with deep determin-

istic policy gradient proposed in [45].
• AC-MAML: AC with model-agnostic meta-learning pro-

posed in [16].
The first three provide benchmarks from an optimization
perspective, while the last two compare with EMCL from a
learning perspective. For the AC benchmarks, the actor and
critic are parameterized by two DNNs with the complexity
O(TK(N + 1)L3 +L4), where L3 and L4 are constants, thus
keeping the same magnitude with the proposed EMCL [43].

We remark that although the formulated problem P1 is for
resource allocation in one scheduling cycle, i.e., T time slots,
it can be extended to evaluate the average performance over
the long term with multiple scheduling cycles. In simulations,
if the original demand is not completely transmitted within
one cycle, the demand can be updated by Dk = Dk −
Rk + D̂k,∀k ∈ K, where Rk =

∑
t∈T

∑
g∈G Rk,g,txg,t is

the transmitted data in this scheduling cycle and D̂k is the
newly arrived demand of k. In the next cycle, P1 can be re-
solved with the updated demands. This process repeats until
scheduling terminates.

A. Capability in Dealing with Dynamic Environments

To verify the capability of the proposed EMCL in dealing
with dynamic environments, Fig. 4-6 compare EMCL with
AC-MAML and AC-DDPG in three dynamic scenarios. In Fig.
4, we consider the first scenario with users’ irregular access
and departure, which can be disruptive to the typical statistical
properties. For instance, the adopted simulator generates user
arrivals by following the Poisson distribution as the normal
case, while it also periodically generates abnormal events
(every 200 slots) with randomly large/small number of arrived
users. We update the environment information every 200 time
slots. From Fig. 4, both EMCL and AC-MAML are able
to converge before each update, but EMCL saves 28.66%
recovery time and reduces 45.42% objective value than AC-
MAML, where we define a recovery time counting from
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Table I: Parameter setting

Total number of GDs in network 500-1000
Number of transmitters 1 LEO, 1 BS and 2 TSTs

Time limitation T 10 time slots
Duration of time slot Φ 0.1 s

ε in D′k = εDk 0.3 - 0.6
Altitude of LEO 780 km

Transmit power of LEO 100 W
Transmit power of BS 40 W

Transmit power of TST 2 W
Bandwidth for C-band 20 MHz
Bandwidth for Ka-band 400 MHz

Carrier frequency of C-Band 4 GHz
Carrier frequency of Ka-Band 30 GHz
Noise power spectral density -174 dBm/Hz

Weights values 0 ≤ η0 ≤ 10
η1 + ...+ ηK = 1

Parameterized meta critic HNN
Parameterized actor CNN

Distribution of stochastic policy Gaussian
Learning rate 0.001

Batch size 128
Memory size 10,000

Discount factor 0.9
Size of search space 10in Wolpertinger policy

Environment update interval 200 time slots

Software platform Python 3.6 with
TensorFlow 1.12.0

the moment of dramatic performance degradation until the
performance recoveries to the normal level. For AC-DDPG,
the convergence performance is inferior to the others, and
fails to converge when updating occurs at the 200-th and
600-th time slot. We remark that the case of user departure
is easier to be adapted. Fewer users in the system reduce
the problem dimension, and thus simplify the learning task,
leading to a halved recovery time and flat curves between the
200-th and the 400-th slots in three algorithms. In contrast,
it is more difficult to deal with the case of user arrival,
referring to the large fluctuation after the 400-th slot, mainly
due to lacking relevant new-user data and the exponentially
increasing dimension. We can observe that EMCL has strong
capabilities in adapting to this difficult case and achieves more
performance gains than the other two algorithms.

In Fig. 5, we evaluate the algorithms’ capabilities in adapt-
ing to unforeseen dynamic demands. The simulator generates
the volume of users’ arrived demand by the uniform distribu-
tion as the normal case. Then, the distribution can be changed
due to the abnormal bursty demands, e.g., switching from
a low-speed voice call to a data-hungry HD video service,
or vice versa. In Fig. 6, we consider the channel states can
undergo non-ideal large fluctuations, e.g., sharply deteriorated
channel conditions due to the large obstacles or the rain/cloud
blocks appearing in the transmission path. Similarly to Fig.
4, we collect the updated environment information every 200
time slots. From Fig. 5 and Fig. 6, AC-DDPG has poor con-
vergence performance, since AC-DDPG needs to re-train the
learning model from scratch when the environment changes,
leading to a slow adaptation, while EMCL and AC-MAML
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Fig. 4. Performance in adapting to dynamic scenario 1:
user entry and leave.
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Fig. 5. Performance in adapting to dynamic scenario 2:
bursty demands.

extract the meta-knowledge from multiple tasks to accelerate
the convergence speed. EMCL re-fits the learning model in a
timely manner than AC-MAML. This is because EMCL uses
meta critic to guide the actor to adjust scheduling schemes
more effectively in a dynamic environment, and the designed
HNN and Wolpertinger mapping approach can improve the
learning accuracy and efficiency in large discrete action spaces.

Fig. 7 further summarizes the average recovery time with
respect to the numbers of GDs based on Fig. 4. In general, the
more GDs in the system, the longer the recovery time required
to adapt to the new environment. On average, EMCL saves
29.83% and 13.49% recovery time compared to AC-DDPG
and AC-MAML, respectively, and the time-saving gain of
EMCL becomes even larger when more GDs in the system. In
addition, we compare the EMCL algorithm with and without
the Wolpertinger policy to demonstrate the effectiveness of
the adopted action mapping method. The recovery time of
the latter is 10.11% increased than the former but less than
AC-DDPG and AC-MAML. At the convergence, EMCL can
decrease the average objective value by 30.36% compared to
EMCL without the Wolpertinger policy.
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Fig. 6. Performance in adapting to dynamic scenario 3:
unforeseen channel variations.
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Fig. 7. Recovery time vs. number of users

B. Trade-Offs between Computational Time and Optimality

To demonstrate EMCL’s trade-off performance between
approaching the optimum (Fig. 8) and computational time
(Fig. 9), we compare EMCL with five benchmarks. In Fig. 8,
we observe 50 environmental information updates and record
the average objective values within each update cycle. For
AC-MAML and AC-DDPG, the average gaps to the optimum
are 45.26% and 57.23%, respectively, while for EMCL, the
average gap drops to 27.58%. The performance of EMCL is
slightly better than ADMM-HEU, around 3.54%. For GRD,
the average gap to the optimum is 74.15%, which is inferior
to the AC-based algorithms.

Fig. 9 compares the computational time with respect to the
number of GDs. OPT is the most time-consuming algorithm,
as expected. Compared to OPT, ADMM-HEU saves 98.14%
computational time by decomposing variables into multiple
blocks and performing parallel computations. The computa-
tional time in ECML, two AC algorithms, and GRD keep at
the millisecond level, but the proposed EMCL achieves smaller
gaps to the optimum, hence concluding the better trade-off
performance of EMCL than other benchmarks.
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Fig. 9. Computational time vs. number of users

VI. CONCLUSION

We have investigated a resource scheduling problem in
dynamic LEO-terrestrial communication systems to address
the mismatch issue in a practical over-loaded scenario. Due
to the high computational time of the optimal algorithm and
the proposed ADMM-HEU algorithm, we solve the problem
from the perspective of DRL to obtain online solutions. To
enable the learning model to fast adapt to dynamic envi-
ronments, we develop an EMCL algorithm that is able to
handle the environmental changes in wireless networks, such
as bursty demands, users’ entry/leave, and abrupt channel
change. Numerical results show that, when encountering an
environmental variation, EMCL consumes less recovery time
to re-fit the learning model, compared to AC-DDPG and AC-
MAML. Furthermore, EMCL achieves a good trade-off be-
tween solutions quality and computation efficiency compared
to offline and AC-based benchmarks. An extension of the
current work is to combine other techniques, e.g., continuous
learning and behavior regularization, to further improve the
sample efficiency and model adaptability.

APPENDIX A
PROOF OF LEMMA 1

We relax all the binary variables of P1 to contin-
uous variables x̂ = [x̂1,1, ..., x̂g,t, ..., x̂G,T ]T and ŷ =
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[ŷ1, ..., ŷk, ..., ŷK ]T, where x̂g,t, ŷk ∈ [0, 1]. The relaxed ob-
jective function is written by:

f(x̂, ŷ) = η0

(
1Tŷ−K

)2
+
∑
k∈K

ηk
(
rT
kx̂−Dk

)2
, (37)

where 1 = [1, ..., 1]T and rk = [Rk,1,1, ..., Rk,g,t, ..., Rk,G,T ]T.
We expand

(
1Tŷ−K

)2
and

(
rT
kx̂−Dk

)2
as follows:(

1Tŷ−K
)2

= ŷTEŷ− 2Dk1T
kŷ +K, (38)(

rT
kx̂−Dk

)2
= x̂TRx̂− 2DkrT

kx̂ +D2
k, (39)

where E is an all-ones matrix and

R =


R2
k,1,1 Rk,1,1Rk,1,2 · · · Rk,1,1Rk,G,T

Rk,1,2Rk,1,1 R2
k,1,2 · · · Rk,1,2Rk,G,T

...
...

. . .
...

Rk,G,TRk,1,1 Rk,G,TRk,1,2 · · · R2
k,G,T

 .
(40)

Referring to the theorem of quadratic programming, a
quadratic function is convex when its corresponding real
symmetric matrix is positive semi-definite [30]. According to
the definition, E and R are positive semi-definite matrices
since, given an arbitrary vector v = [v1, ..., vG×T ] 6= 0, we
can calculate vTEv =

(
1Tv
)2 ≥ 0 and vTRv =

(
rTv
)2 ≥ 0

[30]. Therefore, f(x̂, ŷ) is convex as it is the summation of
K + 1 convex functions. Besides, the constraints Eq. (14b)-
(14d) are linear, hence the conclusion.

APPENDIX B
PROOF OF LEMMA 2

The objective of the learning agent is to find a policy π(a|st)
that maximizes the expected accumulated reward

∑T
t=0 γ

trt.
With rt in Eq. (23), we expand

∑T
t=0 γ

trt as:

T∑
t=0

γtrt =

K∑
k=0

ηk

[
γ∆2

k,0 +

T∑
t=1

(γt+1 − γt)∆2
k,t − γT∆2

k,T

]
γ=1
=

K∑
k=0

ηk
(
∆2
k,0 −∆2

k,T

)
=

K∑
k=0

ηk∆2
k,0 − η0

(
K∑
k=1

1 (bk,T −D′k)−K

)2

−
K∑
k=1

ηk (bk,T −Dk)
2
, (41)

where bk,T =
∑T
t=1Rk,at,t. Thus, we can obtain the optimal

policy a∗t ∼ π∗(a|st) by solving the following problem:

max
π(a|st)

−Eπ(a|st)

η0

(
K∑
k=1

1

(
T∑
t=1

Rk,at,t −D′k

)
−K

)2

−
K∑
k=1

ηk

(
T∑
t=1

Rk,at,t −Dk

)2
 , (42)

which is equivalent to the objective Eq. (14a), thus the
conclusion.

APPENDIX C
PROOF OF LEMMA 3

Denote Q(s, a1), ..., Q(s, aM ) as random variables
X1, ..., XM , where Xm′ = Q(s, a∗s) and Xm ∼
U(Q(s, a∗s)−κ,Q(s, a∗s)+κ), ∀m 6= m′. Thus, Q(s, a∗w) can
be expressed as a random variable Ψ = max{X1, ..., XM}.
The cumulative distribution function of Ψ is expressed as:

FΨ(ψ) =P[Ψ ≤ ψ] = P[max{X1, ..., XM} ≤ ψ]

=P[X1 ≤ ψ]P[X2 ≤ ψ]...P[XM ≤ ψ]

=FX1
(ψ)FX2

(ψ)...FXM (ψ) (43)

For m 6= m′, based on the cumulative distribution function of
uniform distribution, we can derive:

FXm(ψ) =
ψ −Q(s, a∗s) + κ

2κ
,

ψ ∈ [Q(s, a∗s)− κ,Q(s, a∗s) + κ] . (44)

For m = m′, as Xm′ = Q(s, a∗s), the cumulative distribution
function is:

FXm′ (ψ) = P[Xm′ ≤ ψ] =

{
1, ψ ≥ Q(s, a∗s),
0, ψ < Q(s, a∗s).

(45)

By substituting Eq. (44) and Eq. (45) into Eq. (43),

FΨ(ψ)=

{(
y−Q(s,a∗s)+κ

2κ

)
M−1

, ψ ∈ [Q(s, a∗s), Q(s, a∗s) + κ],

0, ψ ∈ [Q(s, a∗s)− κ,Q(s, a∗s)).
(46)

Then, the probability density function of Ψ can be calculated
by solving the first derivative:

fΨ(ψ) = [FΨ(ψ)]′

=


1

2M−1 δ(ψ −Q(s, a∗s)), ψ = Q(s, a∗s),
M−1

2κ

(
ψ−Q+κ

2κ

)
M−2

, Q(s, a∗s) < ψ ≤ Q(s, a∗s) + κ,

0, otherwise,
(47)

where δ(·) is Dirac function. The expectation of Ψ is:

E [Ψ] = E [Q(s, a∗w)] =

∫ Q(s,a∗s)+κ

Q(s,a∗s)

ψfΨ(ψ)dψ

=
1

2M−1

∫ Q(s,a∗s)+

Q(s,a∗s)−
ψδ(y −Q(s, a∗s))dy

+

∫ Q(s,a∗s)+κ

Q(s,a∗s)+

ψ
M − 1

2κ

(
ψ −Q(s, a∗s) + κ

2κ

)
M−2

dψ

=
Q(s, a∗s)

2M−1
+Q(s, a∗s) + κ− 2κ

M
− Q(s, a∗s)

2M−1
+

κ

M · 2M−1

=Q(s, a∗s) + κ

(
1− 2(2M − 1)

M · 2M

)
. (48)

Thus the conclusion.
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