Näytä suppeat kuvailutiedot

dc.contributor.authorLiu, Pengyuan
dc.contributor.authorKoivisto, Sonja
dc.contributor.authorHiippala, Tuomo
dc.contributor.authorvan der Lijn, Charlotte
dc.contributor.authorVäisänen, Tuomas
dc.contributor.authorNurmi, Marisofia
dc.contributor.authorToivonen, Tuuli
dc.contributor.authorVehkakoski, Kirsi
dc.contributor.authorPyykönen, Janne
dc.contributor.authorVirmasalo, Ilkka
dc.contributor.authorSimula, Mikko
dc.contributor.authorHasanen, Elina
dc.contributor.authorSalmikangas, Anna-Katriina
dc.contributor.authorMuukkonen, Petteri
dc.date.accessioned2022-08-15T09:19:52Z
dc.date.available2022-08-15T09:19:52Z
dc.date.issued2022
dc.identifier.citationLiu, P., Koivisto, S., Hiippala, T., van der Lijn, C., Väisänen, T., Nurmi, M., Toivonen, T., Vehkakoski, K., Pyykönen, J., Virmasalo, I., Simula, M., Hasanen, E., Salmikangas, A.-K., & Muukkonen, P. (2022). Extracting locations from sport and exercise-related social media messages using a neural network-based bilingual toponym recognition model. <i>Journal of Spatial Information Science</i>, (24), 31-61. <a href="https://doi.org/10.5311/JOSIS.2022.24.167" target="_blank">https://doi.org/10.5311/JOSIS.2022.24.167</a>
dc.identifier.otherCONVID_150907029
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/82535
dc.description.abstractSport and exercise contribute to health and well-being in cities. While previous research has mainly focused on activities at specific locations such as sport facilities, "informal sport" that occur at arbitrary locations across the city have been largely neglected. Such activities are more challenging to observe, but this challenge may be addressed using data collected from social media platforms, because social media users regularly generate content related to sports and exercise at given locations. This allows studying all sport, including those "informal sport" which are at arbitrary locations, to better understand sports and exercise-related activities in cities. However, user-generated geographical information available on social media platforms is becoming scarcer and coarser. This places increased emphasis on extracting location information from free-form text content on social media, which is complicated by multilingualism and informal language. To support this effort, this article presents an end-to-end deep learning-based bilingual toponym recognition model for extracting location information from social media content related to sports and exercise. We show that our approach outperforms five state-of-the-art deep learning and machine learning models. We further demonstrate how our model can be deployed in a geoparsing framework to support city planners in promoting healthy and active lifestyles.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherNational Center for Geographic Information and Analysis
dc.relation.ispartofseriesJournal of Spatial Information Science
dc.relation.urihttp://204.48.17.207/index.php/josis/article/view/167
dc.rightsCC BY 4.0
dc.subject.otherdigital geography
dc.subject.otherdeep learning
dc.subject.othergeoparsing
dc.subject.othergeoreferencing
dc.subject.othersocial media
dc.subject.othersports geography
dc.subject.othertoponym recognition
dc.titleExtracting locations from sport and exercise-related social media messages using a neural network-based bilingual toponym recognition model
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202208154079
dc.contributor.laitosLiikuntatieteellinen tiedekuntafi
dc.contributor.laitosFaculty of Sport and Health Sciencesen
dc.contributor.oppiaineResurssiviisausyhteisöfi
dc.contributor.oppiaineLiikunnan yhteiskuntatieteetfi
dc.contributor.oppiaineYhteiskuntapolitiikkafi
dc.contributor.oppiaineSchool of Resource Wisdomen
dc.contributor.oppiaineSocial Sciences of Sportsen
dc.contributor.oppiaineSocial and Public Policyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange31-61
dc.relation.issn1948-660X
dc.relation.numberinseries24
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 Pengyuan Liu, Sonja Koivisto, Tuomo Hiippala, Charlotte van der Lijn, Tuomas Vaisanen, Marisofia Nurmi, Tuuli Toivonen, Kirsi Vehkakoski, Janne Pyykonen, Ilkka Virmasalo, Mikko Simula, Elina Hasanen, Anna-Katriina Salmikangas, Petteri Muukkonen
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumberVN/10837/2020
dc.subject.ysoliikunta
dc.subject.ysotekstinlouhinta
dc.subject.ysokoneoppiminen
dc.subject.ysokaupunkimaantiede
dc.subject.ysososiaalinen media
dc.subject.ysoliikuntapaikat
dc.subject.ysopaikannimet
dc.subject.ysosyväoppiminen
dc.subject.ysopaikkatiedot
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p916
jyx.subject.urihttp://www.yso.fi/onto/yso/p27112
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p2219
jyx.subject.urihttp://www.yso.fi/onto/yso/p20774
jyx.subject.urihttp://www.yso.fi/onto/yso/p5871
jyx.subject.urihttp://www.yso.fi/onto/yso/p10410
jyx.subject.urihttp://www.yso.fi/onto/yso/p39324
jyx.subject.urihttp://www.yso.fi/onto/yso/p2152
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.5311/JOSIS.2022.24.167
dc.relation.funderMinistry of the Environmenten
dc.relation.funderYmpäristöministeriöfi
jyx.fundingprogramOthersen
jyx.fundingprogramMuutfi
jyx.fundinginformationThis study is a part of the “Equality in suburban physical activity environments, YLLI” re-search project (in Finnish: Yhdenvertainen liikunnallinen lähiö, YLLI). The project is beingfinanced by the research program about suburban in Finland “Lähiöohjelma 2020-2022”coordinated by the Ministry of Environment (grant recipient: Dr. Petteri Muukkonen).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0