Näytä suppeat kuvailutiedot

dc.contributor.authorChakraborty, Antik
dc.contributor.authorOvaskainen, Otso
dc.contributor.authorDunson, David B.
dc.date.accessioned2022-08-12T04:01:26Z
dc.date.available2022-08-12T04:01:26Z
dc.date.issued2022
dc.identifier.citationChakraborty, A., Ovaskainen, O., & Dunson, D. B. (2022). Bayesian semiparametric long memory models for discretized event data. <i>Annals of Applied Statistics</i>, <i>16</i>(3), 1380-1399. <a href="https://doi.org/10.1214/21-AOAS1546" target="_blank">https://doi.org/10.1214/21-AOAS1546</a>
dc.identifier.otherCONVID_150929705
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/82484
dc.description.abstractWe introduce a new class of semiparametric latent variable models for long memory discretized event data. The proposed methodology is motivated by a study of bird vocalizations in the Amazon rain forest; the timings of vocalizations exhibit self-similarity and long range dependence. This rules out Poisson process based models where the rate function itself is not long range dependent. The proposed class of FRActional Probit (FRAP) models is based on thresholding, a latent process. This latent process is modeled by a smooth Gaussian process and a fractional Brownian motion by assuming an additive structure. We develop a Bayesian approach to inference using Markov chain Monte Carlo and show good performance in simulation studies. Applying the methods to the Amazon bird vocalization data, we find substantial evidence for self-similarity and non-Markovian/Poisson dynamics. To accommodate the bird vocalization data in which there are many different species of birds exhibiting their own vocalization dynamics, a hierarchical expansion of FRAP is provided in the Supplementary Material.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherInstitute of Mathematical Statistics
dc.relation.ispartofseriesAnnals of Applied Statistics
dc.rightsIn Copyright
dc.subject.otherekologinen mallinnus
dc.subject.otherAmazon
dc.subject.otherfractal
dc.subject.otherfractional Brownian motion
dc.subject.otherlatent Gaussian process models
dc.subject.otherlong range dependence
dc.subject.othernonparametric Bayes
dc.subject.otherprobit
dc.subject.othertime series
dc.titleBayesian semiparametric long memory models for discretized event data
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202208124030
dc.contributor.laitosBio- ja ympäristötieteiden laitosfi
dc.contributor.laitosDepartment of Biological and Environmental Scienceen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1380-1399
dc.relation.issn1932-6157
dc.relation.numberinseries3
dc.relation.volume16
dc.type.versionacceptedVersion
dc.rights.copyright© 2022 Institute of Mathematical Statistics
dc.rights.accesslevelopenAccessfi
dc.subject.ysofraktaalit
dc.subject.ysotodennäköisyyslaskenta
dc.subject.ysobayesilainen menetelmä
dc.subject.ysomallintaminen
dc.subject.ysomatemaattinen tilastotiede
dc.subject.ysogaussiset prosessit
dc.subject.ysoMarkovin ketjut
dc.subject.ysoaikasarjat
dc.subject.ysoluonnon monimuotoisuus
dc.subject.ysoMonte Carlo -menetelmät
dc.subject.ysoluonnonäänet
dc.subject.ysolinnut -- äänet
dc.subject.ysosademetsät
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p6341
jyx.subject.urihttp://www.yso.fi/onto/yso/p4746
jyx.subject.urihttp://www.yso.fi/onto/yso/p17803
jyx.subject.urihttp://www.yso.fi/onto/yso/p3533
jyx.subject.urihttp://www.yso.fi/onto/yso/p3590
jyx.subject.urihttp://www.yso.fi/onto/yso/p38750
jyx.subject.urihttp://www.yso.fi/onto/yso/p13075
jyx.subject.urihttp://www.yso.fi/onto/yso/p12290
jyx.subject.urihttp://www.yso.fi/onto/yso/p5497
jyx.subject.urihttp://www.yso.fi/onto/yso/p6361
jyx.subject.urihttp://www.yso.fi/onto/yso/p19764
jyx.subject.urihttp://www.yso.fi/onto/yso/p20556
jyx.subject.urihttp://www.yso.fi/onto/yso/p3487
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1214/21-AOAS1546
jyx.fundinginformationThe authors acknowledge support from the United States Office of Naval Research (ONR) and the European Research Council (ERC).
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright