Identifying Vibrations that Control Non-adiabatic Relaxation of Polaritons in Strongly Coupled Molecule-Cavity Systems
Tichauer, R. H., Morozov, D., Sokolovskii, I., Toppari, J. J., & Groenhof, G. (2022). Identifying Vibrations that Control Non-adiabatic Relaxation of Polaritons in Strongly Coupled Molecule-Cavity Systems. Journal of Physical Chemistry Letters, 13(26), 6259-6267. https://doi.org/10.1021/acs.jpclett.2c00826
Published in
Journal of Physical Chemistry LettersAuthors
Date
2022Copyright
© 2022 the Authors
The strong light–matter coupling regime, in which excitations of materials hybridize with excitations of confined light modes into polaritons, holds great promise in various areas of science and technology. A key aspect for all applications of polaritonic chemistry is the relaxation into the lower polaritonic states. Polariton relaxation is speculated to involve two separate processes: vibrationally assisted scattering (VAS) and radiative pumping (RP), but the driving forces underlying these two mechanisms are not fully understood. To provide mechanistic insights, we performed multiscale molecular dynamics simulations of tetracene molecules strongly coupled to the confined light modes of an optical cavity. The results suggest that both mechanisms are driven by the same molecular vibrations that induce relaxation through nonadiabatic coupling between dark states and polaritonic states. Identifying these vibrational modes provides a rationale for enhanced relaxation into the lower polariton when the cavity detuning is resonant with specific vibrational transitions.
...
Publisher
American Chemical Society (ACS)ISSN Search the Publication Forum
1948-7185Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/148802103
Metadata
Show full item recordCollections
Related funder(s)
European Commission; Research Council of FinlandFunding program(s)
Research infrastructures, H2020; Academy Project, AoF
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Additional information about funding
This work was supported by the Academy of Finland (Grant 323996) and European Union (H2020-INFRAEDI-02-2018-823830).License
Related items
Showing items with similar title or keywords.
-
Strong coupling between surface plasmon polaritons and molecules : Lindblad equation approach
Asikainen, Aili (2016)Pintaplasmonipolaritonit (SPP) ovat metallin ja dielektrisen aineen, esim. ilma, rajapintaan syntyviä sähkömagneettisia aaltoja. Tämä työ käsittelee SPP:en ja molekyylien välistä vuorovaikutusta vahvan kytkennän rajalla. ... -
Interaction between surface plasmon polaritons and molecules in strong coupling limit
Baieva, Svitlana (University of Jyväskylä, 2016)Miniaturization of optical elements and their integration to electronic circuits is limited by diffraction limit. It was realized that light being coupled to surface plasmons (SP) can overcome this limit. Employing also ... -
Absence of mutual polariton scatterings for strongly coupled surface plasmon polaritons and dye molecules with large Stokes shift
Koponen, Mikko; Hohenester, U.; Hakala, Tommi; Toppari, Jussi (American Physical Society, 2013)The understanding and control of the dynamics of hybrid modes consisting of strongly coupled surface plasmon polaritons and molecular excitations of dye molecules is of great timely interest, as it allows one to ... -
Theory for the stationary polariton response in the presence of vibrations
Kansanen, Kalle S. U.; Asikainen, Aili; Toppari, J. Jussi; Groenhof, Gerrit; Heikkilä, Tero T. (American Physical Society, 2019)We construct a model describing the response of a hybrid system where the electromagnetic field—in particular, surface plasmon polaritons—couples strongly with electronic excitations of atoms or molecules. Our approach is ... -
Complexes of Glycolic Acid with Nitrogen Isolated in Argon Matrices. II : Vibrational Overtone Excitations
Kosendiak, Iwona; Ahokas, Jussi M.E.; Krupa, Justyna; Lundell, Jan; Wierzejewska, Maria (MDPI, 2019)Structural changes of glycolic acid (GA) complex with nitrogen induced by selective overtone excitation of the νOH mode were followed in argon matrices using FTIR spectroscopy. For the most stable SSC1 complex present in ...