dc.contributor.author | Morozov, Dmitry | |
dc.contributor.author | Modi, Vaibhav | |
dc.contributor.author | Mironov, Vladimir | |
dc.contributor.author | Groenhof, Gerrit | |
dc.date.accessioned | 2022-07-01T07:55:25Z | |
dc.date.available | 2022-07-01T07:55:25Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Morozov, D., Modi, V., Mironov, V., & Groenhof, G. (2022). The Photocycle of Bacteriophytochrome Is Initiated by Counterclockwise Chromophore Isomerization. <i>Journal of Physical Chemistry Letters</i>, <i>13</i>(20), 4538-4542. <a href="https://doi.org/10.1021/acs.jpclett.2c00899" target="_blank">https://doi.org/10.1021/acs.jpclett.2c00899</a> | |
dc.identifier.other | CONVID_144334232 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/82151 | |
dc.description.abstract | Photoactivation of bacteriophytochrome involves a cis–trans photoisomerization of a biliverdin chromophore, but neither the precise sequence of events nor the direction of the isomerization is known. Here, we used nonadiabatic molecular dynamics simulations on the photosensory protein dimer to resolve the isomerization mechanism in atomic detail. In our simulations the photoisomerization of the D ring occurs in the counterclockwise direction. On a subpicosecond time scale, the photoexcited chromophore adopts a short-lived intermediate with a highly twisted configuration stabilized by an extended hydrogen-bonding network. Within tens of picoseconds, these hydrogen bonds break, allowing the chromophore to adopt a more planar configuration, which we assign to the early Lumi-R state. The isomerization process is completed via helix inversion of the biliverdin chromophore to form the late Lumi-R state. The mechanistic insights into the photoisomerization process are essential to understand how bacteriophytochrome has evolved to mediate photoactivation and to engineer this protein for new applications. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | American Chemical Society (ACS) | |
dc.relation.ispartofseries | Journal of Physical Chemistry Letters | |
dc.rights | CC BY 4.0 | |
dc.subject.other | absorption | |
dc.subject.other | isomerization | |
dc.subject.other | photoisomerization | |
dc.subject.other | chromophores | |
dc.subject.other | computational chemistry | |
dc.title | The Photocycle of Bacteriophytochrome Is Initiated by Counterclockwise Chromophore Isomerization | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202207013756 | |
dc.contributor.laitos | Kemian laitos | fi |
dc.contributor.laitos | Department of Chemistry | en |
dc.contributor.oppiaine | Fysikaalinen kemia | fi |
dc.contributor.oppiaine | Nanoscience Center | fi |
dc.contributor.oppiaine | Physical Chemistry | en |
dc.contributor.oppiaine | Nanoscience Center | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 4538-4542 | |
dc.relation.issn | 1948-7185 | |
dc.relation.numberinseries | 20 | |
dc.relation.volume | 13 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2022 the Authors | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.relation.grantnumber | 332743 | |
dc.relation.grantnumber | 324975 | |
dc.subject.yso | laskennallinen kemia | |
dc.subject.yso | isomeria | |
dc.subject.yso | valokemia | |
dc.subject.yso | proteiinit | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p23053 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p10129 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p7201 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p4332 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1021/acs.jpclett.2c00899 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Researcher mobility Funding, AoF | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundingprogram | Tutkijaliikkuvuusrahoitus, SA | fi |
jyx.fundinginformation | This work has been done as part of the BioExcel CoE (www. bioexcel.eu), a project funded by the European Union Contracts H2020-INFRAEDI-02-2018-823830 and H2020- EINFRA-2015-1-675728. In addition, the work received support from the Academy of Finland (Grants 332743 and 324975). | |
dc.type.okm | A1 | |