The Photocycle of Bacteriophytochrome Is Initiated by Counterclockwise Chromophore Isomerization
Morozov, D., Modi, V., Mironov, V., & Groenhof, G. (2022). The Photocycle of Bacteriophytochrome Is Initiated by Counterclockwise Chromophore Isomerization. Journal of Physical Chemistry Letters, 13(20), 4538-4542. https://doi.org/10.1021/acs.jpclett.2c00899
Published in
Journal of Physical Chemistry LettersDate
2022Copyright
© 2022 the Authors
Photoactivation of bacteriophytochrome involves a cis–trans photoisomerization of a biliverdin chromophore, but neither the precise sequence of events nor the direction of the isomerization is known. Here, we used nonadiabatic molecular dynamics simulations on the photosensory protein dimer to resolve the isomerization mechanism in atomic detail. In our simulations the photoisomerization of the D ring occurs in the counterclockwise direction. On a subpicosecond time scale, the photoexcited chromophore adopts a short-lived intermediate with a highly twisted configuration stabilized by an extended hydrogen-bonding network. Within tens of picoseconds, these hydrogen bonds break, allowing the chromophore to adopt a more planar configuration, which we assign to the early Lumi-R state. The isomerization process is completed via helix inversion of the biliverdin chromophore to form the late Lumi-R state. The mechanistic insights into the photoisomerization process are essential to understand how bacteriophytochrome has evolved to mediate photoactivation and to engineer this protein for new applications.
...
Publisher
American Chemical Society (ACS)ISSN Search the Publication Forum
1948-7185Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/144334232
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Academy Project, AoF; Researcher mobility Funding, AoFAdditional information about funding
This work has been done as part of the BioExcel CoE (www. bioexcel.eu), a project funded by the European Union Contracts H2020-INFRAEDI-02-2018-823830 and H2020- EINFRA-2015-1-675728. In addition, the work received support from the Academy of Finland (Grants 332743 and 324975).License
Related items
Showing items with similar title or keywords.
-
Photoactive Yellow Protein Chromophore Photoisomerizes around a Single Bond if the Double Bond Is Locked
Mustalahti, Satu; Morozov, Dmitry; Luk, Hoi Ling; Pallerla, Rajanish R.; Myllyperkiö, Pasi; Pettersson, Mika; Pihko, Petri M.; Groenhof, Gerrit (American Chemical Society, 2020)Photoactivation in the Photoactive Yellow Protein, a bacterial blue light photoreceptor, proceeds via photo-isomerization of the double C=C bond in the covalently attached chromophore. Quantum chemistry calculations, ... -
Chromophore-Protein Interplay During the Phytochrome Photocycle Revealed by Step-Scan FTIR Spectroscopy
Ihalainen, Janne; Gustavsson, Emil; Schröder, Lea; Donnini, Serena; Lehtivuori, Heli; Isaksson, Linnéa; Thöing, Christian; Modi, Vaibhav; Berntsson, Oskar; Stucki-Buchli, Brigitte; Liukkonen, Alli; Häkkänen, Heikki; Kalenius, Elina; Westenhoff, Sebastian; Kottke, Tilman (American Chemical Society, 2018)Phytochrome proteins regulate many photoresponses of plants and microorganisms. Light absorption causes isomerization of the biliverdin chromophore, which triggers a series of structural changes to activate the signaling ... -
Protonation of the Biliverdin IXα Chromophore in the Red and Far-Red Photoactive States of Bacteriophytochrome
Modi, Vaibhav; Donnini, Serena; Groenhof, Gerrit; Morozov, Dmitry (American Chemical Society, 2019)The tetrapyrrole chromophore biliverdin IXα (BV) in the bacteriophytochrome from Deinococcus radiodurans (DrBphP) is usually assumed to be fully protonated, but this assumption has not been systematically validated by ... -
UV laser induced photolysis of glycolic acid isolated in argon matrices
Krupa, Justy; Kosendiak, Iwona; Wierzejewska, Maria; Ahokas, Jussi; Lundell, Jan (Elsevier, 2021)The photochemistry of matrix-isolated glycolic acid, induced by UV light, was studied by FTIR spectroscopy and B3LYPD3/6-311++G(3df,3pd) calculations. Several decomposition pathways were found to take place upon 212 nm and ... -
Transient IR spectroscopy identifies key interactions and unravels new intermediates in the photocycle of a bacterial phytochrome
Kübel, Joachim; Chenchiliyan, Manoop; Ooi, Saik Ann; Gustavsson, Emil; Isaksson, Linnéa; Kuznetsova, Valentyna; Ihalainen, Janne A.; Westenhoff, Sebastian; Maj, Michał (Royal Society of Chemistry, 2020)Phytochromes are photosensory proteins in plants, fungi, and bacteria, which detect red- and far-red light. They undergo a transition between the resting (Pr) and photoactivated (Pfr) states. In bacterial phytochromes, the ...