Show simple item record

dc.contributor.authorLindholm, Vivian
dc.contributor.authorRaita-Hakola, Anna-Maria
dc.contributor.authorAnnala, Leevi
dc.contributor.authorSalmivuori, Mari
dc.contributor.authorJeskanen, Leila
dc.contributor.authorSaari, Heikki
dc.contributor.authorKoskenmies, Sari
dc.contributor.authorPitkänen, Sari
dc.contributor.authorPölönen, Ilkka
dc.contributor.authorIsoherranen, Kirsi
dc.contributor.authorRanki, Annamari
dc.date.accessioned2022-06-22T11:02:23Z
dc.date.available2022-06-22T11:02:23Z
dc.date.issued2022
dc.identifier.citationLindholm, V., Raita-Hakola, A.-M., Annala, L., Salmivuori, M., Jeskanen, L., Saari, H., Koskenmies, S., Pitkänen, S., Pölönen, I., Isoherranen, K., & Ranki, A. (2022). Differentiating Malignant from Benign Pigmented or Non-Pigmented Skin Tumours : A Pilot Study on 3D Hyperspectral Imaging of Complex Skin Surfaces and Convolutional Neural Networks. <i>Journal of Clinical Medicine</i>, <i>11</i>(7), Article 1914. <a href="https://doi.org/10.3390/jcm11071914" target="_blank">https://doi.org/10.3390/jcm11071914</a>
dc.identifier.otherCONVID_146493861
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/81969
dc.description.abstractSeveral optical imaging techniques have been developed to ease the burden of skin cancer disease on our health care system. Hyperspectral images can be used to identify biological tissues by their diffuse reflected spectra. In this second part of a three-phase pilot study, we used a novel hand-held SICSURFIS Spectral Imager with an adaptable field of view and target-wise selectable wavelength channels to provide detailed spectral and spatial data for lesions on complex surfaces. The hyperspectral images (33 wavelengths, 477–891 nm) provided photometric data through individually controlled illumination modules, enabling convolutional networks to utilise spectral, spatial, and skin-surface models for the analyses. In total, 42 lesions were studied: 7 melanomas, 13 pigmented and 7 intradermal nevi, 10 basal cell carcinomas, and 5 squamous cell carcinomas. All lesions were excised for histological analyses. A pixel-wise analysis provided map-like images and classified pigmented lesions with a sensitivity of 87% and a specificity of 93%, and 79% and 91%, respectively, for non-pigmented lesions. A majority voting analysis, which provided the most probable lesion diagnosis, diagnosed 41 of 42 lesions correctly. This pilot study indicates that our non-invasive hyperspectral imaging system, which involves shape and depth data analysed by convolutional neural networks, is feasible for differentiating between malignant and benign pigmented and non-pigmented skin tumours, even on complex skin surfaces.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.ispartofseriesJournal of Clinical Medicine
dc.rightsCC BY 4.0
dc.subject.otherbiomedical optical imaging
dc.subject.otherconvolutional neural networks
dc.subject.otherhyperspectral imaging
dc.subject.othernon-invasive imaging
dc.subject.otheroptical modelling
dc.subject.otherphotometric stereo
dc.subject.otherskin cancer
dc.subject.otherskin imaging
dc.titleDifferentiating Malignant from Benign Pigmented or Non-Pigmented Skin Tumours : A Pilot Study on 3D Hyperspectral Imaging of Complex Skin Surfaces and Convolutional Neural Networks
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202206223574
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineComputing, Information Technology and Mathematicsfi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineComputing, Information Technology and Mathematicsen
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineComputational Scienceen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2077-0383
dc.relation.numberinseries7
dc.relation.volume11
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber314519
dc.subject.ysoihosyöpä
dc.subject.ysokoneoppiminen
dc.subject.ysomelanooma
dc.subject.ysoneuroverkot
dc.subject.ysohyperspektrikuvantaminen
dc.subject.ysokarsinoomat
dc.subject.ysodiagnostiikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p13613
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
jyx.subject.urihttp://www.yso.fi/onto/yso/p15128
jyx.subject.urihttp://www.yso.fi/onto/yso/p7292
jyx.subject.urihttp://www.yso.fi/onto/yso/p39290
jyx.subject.urihttp://www.yso.fi/onto/yso/p28373
jyx.subject.urihttp://www.yso.fi/onto/yso/p416
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.3390/jcm11071914
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Programme, AoFen
jyx.fundingprogramAkatemiaohjelma, SAfi
jyx.fundinginformationThis research was funded by the RADDESS program of the Academy of Finland, consortium grant number 314519. Open access funding was provided by University of Helsinki.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0