University of Jyväskylä | JYX Digital Repository

  • English  | Give feedback |
    • suomi
    • English
 
  • Login
JavaScript is disabled for your browser. Some features of this site may not work without it.
View Item 
  • JYX
  • Opinnäytteet
  • Pro gradu -tutkielmat
  • View Item
JYX > Opinnäytteet > Pro gradu -tutkielmat > View Item

Application of artificial neural network and genetic algorithm to forecasting of wind power output

Thumbnail
View/Open
21.Mb

Downloads:  
Show download detailsHide download details  
Authors
Lin, Tzu Chao
Date
2007

 
Keywords
artificial neural network genetic algorithm wind power forecasting neuroverkot tuulienergia
URI

http://urn.fi/URN:NBN:fi:jyu-2007564

Metadata
Show full item record
Collections
  • Pro gradu -tutkielmat [23417]

Related items

Showing items with similar title or keywords.

  • Using deep neural networks for kinematic analysis : challenges and opportunities 

    Cronin, Neil J. (Elsevier BV, 2021)
    Kinematic analysis is often performed in a lab using optical cameras combined with reflective markers. With the advent of artificial intelligence techniques such as deep neural networks, it is now possible to perform such ...
  • The Impact of Regularization on Convolutional Neural Networks 

    Zeeshan, Khaula (2018)
    Syvä oppiminen (engl. deep learning) on viime aikoina tullut suosituimmaksi koneoppimisen menetelmäksi. Konvoluutio(hermo)verkko on yksi suosituimmista syvän oppimisen arkkitehtuureista monimutkaisiin ongelmiin kuten kuvien ...
  • Evolutionary Algorithms and Metaheuristics : Applications in Engineering Design and Optimization 

    Greiner, David; Periaux, Jacques; Quagliarella, Domenico; Magalhaes-Mendes, Jorge; Galván, Blas (Hindawi Publishing Corporation, 2018)
  • Taxonomy of generative adversarial networks for digital immunity of Industry 4.0 systems 

    Terziyan, Vagan; Gryshko, Svitlana; Golovianko, Mariia (Elsevier, 2021)
  • Using Aerial Platforms in Predicting Water Quality Parameters from Hyperspectral Imaging Data with Deep Neural Networks 

    Hakala, Taina; Pölönen, Ilkka; Honkavaara, Eija; Näsi, Roope; Hakala, Teemu; Lindfors, Antti (Springer, 2020)
    In near future it is assumable that automated unmanned aerial platforms are coming more common. There are visions that transportation of different goods would be done with large planes, which can handle over 1000 kg payloads. ...
  • Browse materials
  • Browse materials
  • Articles
  • Conferences and seminars
  • Electronic books
  • Historical maps
  • Journals
  • Tunes and musical notes
  • Photographs
  • Presentations and posters
  • Publication series
  • Research reports
  • Research data
  • Study materials
  • Theses

Browse

All of JYXCollection listBy Issue DateAuthorsSubjectsPublished inDepartmentDiscipline

My Account

Login

Statistics

View Usage Statistics
  • How to publish in JYX?
  • Self-archiving
  • Publish Your Thesis Online
  • Publishing Your Dissertation
  • Publication services

Open Science at the JYU
 
Data Protection Description

Accessibility Statement

Unless otherwise specified, publicly available JYX metadata (excluding abstracts) may be freely reused under the CC0 waiver.
Open Science Centre