Näytä suppeat kuvailutiedot

dc.contributor.authorHenderson, J.
dc.contributor.authorHackman, G.
dc.contributor.authorRuotsalainen, P.
dc.contributor.authorHolt, J. D.
dc.contributor.authorStroberg, S. R.
dc.contributor.authorAndreoiu, C.
dc.contributor.authorBall, G. C.
dc.contributor.authorBernier, N.
dc.contributor.authorBowry, M.
dc.contributor.authorCaballero-Folch, R.
dc.contributor.authorCruz, S.
dc.contributor.authorDiaz, Varela A.
dc.contributor.authorEvitts, L. J.
dc.contributor.authorFrederick, R.
dc.contributor.authorGarnsworthy, A. B.
dc.contributor.authorHoll, M.
dc.contributor.authorLassen, J.
dc.contributor.authorMeasures, J.
dc.contributor.authorOlaizola, B.
dc.contributor.authorO'Sullivan, E.
dc.contributor.authorPaetkau, O.
dc.contributor.authorPark, J.
dc.contributor.authorSmallcombe, J.
dc.contributor.authorSvensson, C. E.
dc.contributor.authorWhitmore, K.
dc.contributor.authorWu, C. Y.
dc.date.accessioned2022-06-10T09:46:59Z
dc.date.available2022-06-10T09:46:59Z
dc.date.issued2022
dc.identifier.citationHenderson, J., Hackman, G., Ruotsalainen, P., Holt, J. D., Stroberg, S. R., Andreoiu, C., Ball, G. C., Bernier, N., Bowry, M., Caballero-Folch, R., Cruz, S., Diaz, V. A., Evitts, L. J., Frederick, R., Garnsworthy, A. B., Holl, M., Lassen, J., Measures, J., Olaizola, B., . . . Wu, C. Y. (2022). Coulomb excitation of the |Tz|=1/2, A=23 mirror pair. <i>Physical Review C</i>, <i>105</i>(3), Article 034332. <a href="https://doi.org/10.1103/PhysRevC.105.034332" target="_blank">https://doi.org/10.1103/PhysRevC.105.034332</a>
dc.identifier.otherCONVID_146520290
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/81625
dc.description.abstractBackground: Electric-quadrupole (E2) strengths relate to the underlying quadrupole deformation of a nucleus and present a challenge for many nuclear theories. Mirror nuclei in the vicinity of the line of N=Z represent a convenient laboratory for testing deficiencies in such models, making use of the isospin symmetry of the systems. Purpose: Uncertainties associated with literature E2 strengths in 23Mg are some of the largest in Tz=∣∣12∣∣ nuclei in the sd shell. The purpose of the present paper is to improve the precision with which these values are known, to enable better comparison with theoretical models. Methods: Coulomb-excitation measurements of 23Mg and 23Na were performed at the TRIUMF-ISAC facility using the TIGRESS spectrometer. They were used to determine the E2 matrix elements of mixed E2/M1 transitions. Results: Reduced E2 transition strengths, B(E2), were extracted for 23Mg and 23Na. Their precision was improved by factors of approximately 6 for both isotopes, while agreeing within uncertainties with previous measurements. Conclusions: A comparison was made with both shell-model and ab initio valence-space in-medium similarity renormalization group calculations. Valence-space in-medium similarity renormalization group calculations were found to underpredict the absolute E2 strength, in agreement with previous studies.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Physical Society (APS)
dc.relation.ispartofseriesPhysical Review C
dc.rightsIn Copyright
dc.titleCoulomb excitation of the |Tz|=1/2, A=23 mirror pair
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202206103233
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2469-9985
dc.relation.numberinseries3
dc.relation.volume105
dc.type.versionpublishedVersion
dc.rights.copyright©2022 American Physical Society
dc.rights.accesslevelopenAccessfi
dc.subject.ysoydinfysiikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p14759
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1103/PhysRevC.105.034332
jyx.fundinginformationThis work has been supported by the Natural Sciences and Engineering Research Council of Canada, The Canada Foundation for Innovation, and the British Columbia Knowledge Development Fund. TRIUMF receives federal funding via a contribution agreement through the National Research Council of Canada. Computations were performed with an allocation of computing resources on Cedar at WestGrid and Compute Canada, and on the Oak Cluster at TRIUMF managed by the University of British Columbia department of Advanced Research Computing. Work at Lawrence Livermore National Laboratory was performed under Contract No. DE-AC52-07NA27344. This work was supported by the Office of Nuclear Physics, U.S. Department of Energy, under Grant No. desc0018223 (NUCLEI SciDAC-4 collaboration) and by ORNL Field Work Proposal No. ERKBP72. S.R.S. is supported by the U.S. Department of Energy under Contract No. DE-FG02-97ER41014. J.H. is supported at the University of Surrey under UKRI Future Leaders Fellowship Grant No. MR/T022264/1.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

In Copyright
Ellei muuten mainita, aineiston lisenssi on In Copyright