Quasiconformal uniformization of metric surfaces
Julkaistu sarjassa
JYU DissertationsTekijät
Päivämäärä
2022Tekijänoikeudet
© The Author & University of Jyväskylä
The main subject of this dissertation is the uniformization problem for nonsmooth surfaces. The foundational question is to find necessary and sufficient conditions for the existence of a homeomorphism taking a given nonsmooth surface into a smooth Riemannian surface while requiring minimal geometric distortion from the mapping. More specifically, we require the homeomorphism to be quasiconformal. Our approach is based on a recent work by Rajala. The dissertation consists of four articles.
In article [A], we prove a uniformization result for every nonsmooth surface satisfying mild geometric assumptions. In fact, we only assume that the surface can be covered by domains which can be quasiconformally mapped into the Euclidean plane. We prove that this is a sufficient (and necessary) condition for there to exist a quasiconformal map on to a smooth Riemannian surface.
In article [B], the author and Romney investigate weighted distances on the Euclidean plane. The main result of the article shows a surprising link between the nonsmooth uniformization problem and sets removable for conformal mappings, a notion of removability introduced by Ahlfors and Beurling in the1950s.
In article [C], we examine the boundary structure of nonsmooth Euclidean disks which have finite two-dimensional Hausdorff measure and whose interiors can be quasiconformally mapped on to the Euclidean disk. We prove a generalized Carathéodory theorem in this setting and provide examples showing the sharpness of the result.
In article [D], we consider a metric version of the classical welding problem from complex analysis. We construct nonsmooth spheres by metrically welding the southern and northern hemispheres of the two-dimensional sphere along the equator using a homeomorphism from the equator onto itself. The goal is to understand when the resulting sphere can be quasiconformally mapped to the Euclidean sphere. A necessary condition we establish connects the metric welding problem to the classic alone, while our sufficient conditions are related to measure-theoretic properties and modulus of continuity of the welding map.
...
Julkaisija
Jyväskylän yliopistoISBN
978-951-39-9114-2ISSN Hae Julkaisufoorumista
2489-9003Julkaisuun sisältyy osajulkaisuja
- Artikkeli I: Ikonen, T. (2022). Uniformization of metric surfaces using isothermal coordinates. Annales Fennici Mathematici, 47(1), 155-180. DOI: 10.54330/afm.112781
- Artikkeli II: Ikonen, T. & Romney, M. Quasiconformal geometry and removable sets for conformal mappings, Journal d’Analyse Mathématique, to appear.
- Artikkeli III: Ikonen, T. (2021). Quasiconformal Jordan Domains. Analysis and Geometry in Metric Spaces, 9(1), 167-185. DOI: 10.1515/agms-2020-0127
- Artikkeli IV: Ikonen, T. Two-dimensional metric spheres from gluing hemispheres. Arxiv preprint
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- JYU Dissertations [852]
- Väitöskirjat [3580]
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Uniformization of metric surfaces using isothermal coordinates
Ikonen, Toni (Suomen matemaattinen yhdistys ry, 2022)Todistamme metristen pintojen uniformisaatiolauseen. Metrinen pinta on topologinen pinta varustettuna etäisyysfunktiolla, jonka kaksiulotteinen Hausdorffin mitta on lokaalisti äärellinen. Tutkimme milloin metrinen pinta ... -
Sharpness of uniform continuity of quasiconformal mappings onto s-John domains
Guo, Changyu; Koskela, Pekka (Suomalainen tiedeakatemia, 2017)We show that a prediction in [8] is inaccurate by constructing quasiconformal mappings onto s-John domains so that the mappings fail to be uniformly continuous between natural distances. These examples also exhibit the ... -
Uniformization with Infinitesimally Metric Measures
Rajala, Kai; Rasimus, Martti; Romney, Matthew (Springer, 2021)We consider extensions of quasiconformal maps and the uniformization theorem to the setting of metric spaces X homeomorphic to R2R2. Given a measure μμ on such a space, we introduce μμ-quasiconformal maps f:X→R2f:X→R2, ... -
Riemann surfaces and Teichmüller theory
Ikonen, Toni (2017)Riemannin pinnat ja Teichmüller-teoriaa. Tämän työn päämääränä on määritellä Riemannin pintojen Teichmüller-avaruudet sekä tutkia niiden geometrisia ominaisuuksia. Ensin työssä kehitetään peiteavaruuksien ja toimintojen ... -
Uniformization of two-dimensional metric surfaces
Rajala, Kai (Springer, 2017)We establish uniformization results for metric spaces that are homeomorphic to the Euclidean plane or sphere and have locally finite Hausdorff 2-measure. Applying the geometric definition of quasiconformality, we give ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.