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Abstract

The main subject of this dissertation is the uniformization problem for non-
smooth surfaces. The foundational question is to find necessary and sufficient
conditions for the existence of a homeomorphism taking a given nonsmooth
surface into a smooth Riemannian surface while requiring minimal geometric
distortion from the mapping. More specifically, we require the homeomor-
phism to be quasiconformal. Our approach is based on a recent work by
Rajala. The dissertation consists of four articles.

In article [A], we prove a uniformization result for every nonsmooth surface
satisfying mild geometric assumptions. In fact, we only assume that the
surface can be covered by domains which can be quasiconformally mapped
into the Euclidean plane. We prove that this is a sufficient (and necessary)
condition for there to exist a quasiconformal map onto a smooth Riemannian
surface.

In article [B], the author and Romney investigate weighted distances on the
Euclidean plane. The main result of the article shows a surprising link be-
tween the nonsmooth uniformization problem and sets removable for confor-
mal mappings, a notion of removability introduced by Ahlfors and Beurling
in the 1950s.

In article [C], we examine the boundary structure of nonsmooth Euclidean
disks which have finite two-dimensional Hausdorff measure and whose in-
teriors can be quasiconformally mapped onto the Euclidean disk. We prove
a generalized Carathéodory theorem in this setting and provide examples
showing the sharpness of the result.

In article [D], we consider a metric version of the classical welding problem
from complex analysis. We construct nonsmooth spheres by metrically weld-
ing the southern and northern hemispheres of the two-dimensional sphere
along the equator using a homeomorphism from the equator onto itself. The
goal is to understand when the resulting sphere can be quasiconformally
mapped to the Euclidean sphere. A necessary condition we establish con-
nects the metric welding problem to the classical one, while our sufficient
conditions are related to measure-theoretic properties and modulus of conti-
nuity of the welding map.
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Tiivistelmä

Väitöskirjan pääaihe on epäsileiden pintojen uniformisaatio. Perustavan-
laatuinen kysymys on löytää riittäviä ja välttämättömiä ehtoja, jotta annetulta
epäsileältä pinnalta on olemassa homeomorfismi sileälle pinnalle siten että
kartta vääristää pinnan geometriaa mahdollisimman vähän. Tarkemmin san-
ottuna, vaadimme homeomorfismin olevan kvasikonformaalinen. Lähesty-
mistapamme perustuu äskettäin julkaistuun Rajalan työhön. Väitöskirja koos-
tuu neljästä artikkelista.

Artikkelin [A] päätulos todistaa uniformisaatiotuloksen kaikille epäsileille
pinnoille, jotka toteuttavat heikon geometrisen oletuksen. Oletamme, että
pinta voidaan peittää alueilla, joista jokainen voidaan kvasikonformaalisesti
kuvata tasoon. Osoitamme tämän olevan riittävä (ja välttämätön) ehto sille,
että annetulta pinnalta on olemassa kvasikonformikuvaus johonkin sileään
Riemannin pintaan.

Artikkeli [B] on kirjoitettu yhdessä Matthew Romneyn kanssa. Tutkimme
artikkelissa painotettuja etäisyyksiä Eukleideen tasossa. Artikkelin päätulos
yhdistää yllättävällä tavalla epäsileän uniformisaatiokysymyksen erääseen
Ahlforsin ja Beurlingin 1950-luvulla esittelemään poistuvien joukkojen käsit-
teeseen.

Artikkelissa [C] tutkitaan niiden epäsileiden Eukleideen kiekkojen reunan
rakennetta, joilla on äärellinen kaksiulotteinen Hausdorffin mitta ja joiden
sisuksesta on kvasikonformaalinen kuvaus Eukleideen kiekkoon. Artikkelin
päätulos todistaa yleistetyn Carathéodoryn teoreeman ja esimerkit todistavat
tuloksen olevan paras mahdollinen.

Artikkelin [D] aihe on metrinen versio klassisesta kompleksianalyysin hit-
sausongelmasta. Konstruoimme epäsileitä pintoja metrisesti hitsaamalla ete-
läinen ja pohjoinen pallonpuolisko päiväntasaajia pitkin. Tutkimme milloin
saatu epäsileä pallo voidaan kvasikonformaalisesti kuvata Eukleideen pal-
lolle. Välttämätön ehto yhdistää metrisen ongelman klassiseen hitsausongel-
maan, kun taas riittävät ehdot liittyvät saumakuvauksen mittateoreettisiin
sekä jatkuvuusominaisuuksiin.
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INTRODUCTION

A metric surface X is a separable metric space which is homeomorphic to a
topological surface without boundary and has a locally finite two-dimensional
Hausdorff measure H2

X. We assume surfaces to be connected unless other-
wise mentioned.

Typical examples of metric surfaces include domains V of the Euclidean
plane R2, Riemannian surfaces M endowed with the length distance and
the Riemannian area measure, and weighted distances in the plane. Under
suitable regularity assumptions on a weight ω : R2 → [0, ∞], the weighted
distance

dω(x, y) = inf
∫

γ
ω dt, (1)

the infimum taken over absolutely continuous paths γ : [a, b] → R2 joining x
to y, defines a distance on R2 for which Xω = (R2, dω) is a metric surface.
Similar constructions can be considered when the plane R2 is replaced by
the sphere S2 or another smooth Riemannian surfaces. We elaborate on the
significance of these examples in the coming sections.

Nonsmooth examples can be obtained by considering, for example, the
graph of u(x) = |x|α, for 1 ≥ α > 0, or much more involved constructions as
in Figure 1.

1. Modulus and quasiconformality

An important tool in this dissertation is the so-called conformal modulus: Let
X be a metric surface, and fix a subset F ⊂ X. A path family Γ (in F) is a
collection of paths γ : [a, b] → F. A Borel function ρ : F → [0, ∞] is admissible
for Γ if

1 ≤
∫

γ
ρ ds for every γ ∈ Γ. (2)

The modulus of Γ is

mod Γ = inf
∫

F
ρ2 dH2

X, (3)

where the infimum is taken over all Borel functions admissible for Γ.
Given two metric surfaces X and Y and two subsets F ⊂ X, F′ ⊂ Y, a con-

tinuous map φ : F → F′ has bounded outer dilatation if there exists a constant
K ≥ 1 such that

mod Γ ≤ K mod φΓ for all path families Γ in F. (4)

7



8 INTRODUCTION

Figure 1. Alexander’s horned sphere: A nonsmooth metric
surface.
Source: https://upload.wikimedia.org/wikipedia/commons/
0/0a/Alexander_horned_sphere.png

Here φΓ denotes the collection of all paths φ ◦ γ with γ ∈ Γ. The smallest
constant K for which (4) holds is called the outer dilatation of φ, denoted by
KO(φ). If the preimage of each point under φ is connected, we say that
φ is monotone. Following [NR21b], we say that a monotone and surjective
mapping with finite outer dilatation is weakly quasiconformal.

We say that φ is quasiconformal if φ is a homeomorphism and there exists a
constant K ≥ 1 such that KO(φ), KO(φ−1) ≤ K. Given such a K, we say that φ
is K-quasiconformal and the smallest K with this property is called the maximal
dilatation of φ.

A particular class of quasiconformal homeomorphisms is given by the class
of bi-Lipschitz homeomorphisms: We say that φ : X → Y is Lipschitz if there
exists a constant L ≥ 0 for which

dY(φ(x), φ(y)) ≤ LdX(x, y) for every x, y ∈ X. (5)

Any mapping satisfying (5) is called L-Lipschitz. We say that a homeomor-
phism is (L-)bi-Lipschitz if φ and its inverse are L-Lipschitz for some L ≥
0. By directly working with (2) and (3), the L4-quasiconformality of L-bi-
Lipschitz homeomorphisms follows.

Lastly, we say that a homeomorphism φ : X → Y between metric spaces
is a quasisymmetry if there exists a homeomorphism η : [0, ∞) → [0, ∞) such

https://upload.wikimedia.org/wikipedia/commons/0/0a/Alexander_horned_sphere.png
https://upload.wikimedia.org/wikipedia/commons/0/0a/Alexander_horned_sphere.png
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that
d(φ(x), φ(y))
d(φ(z), φ(y))

≤ η

(
d(x, y)
d(z, y)

)
for every x, y, z ∈ X, z ̸= y, (6)

and whenever (6) holds, we refer to φ as an η-quasisymmetry. Observe that if
φ is L-bi-Lipschitz, it is η-quasisymmetric for η(t) = L2t.

2. Uniformization problems

The Riemann mapping theorem [AS60, Ahl78] states that every simply con-
nected domain X ⊂ R2, with X ̸= R2, is the 1-quasiconformal image of the
Euclidean disk M = D. That is, there exists a 1-quasiconformal homeomor-
phism

u : M → X (7)
from the model space M = D. More generally, a version of the uniformization
problem asks the following: which Riemannian surfaces are quasiconformal
images of some "model" Riemannian surfaces. The following fundamental
theorem, see e.g. [AS60, Cou77, Hub06, dSG10], settles a version of this
question.

Theorem 2.1 (Riemannian uniformization). Suppose that X is a Riemannian
surface. Then there exists a complete and constant curvature Riemannian surface M
and a 1-quasiconformal homeomorphism u : M → X.

The curvature in Theorem 2.1 refers to the Gaussian curvature, and the cur-
vature can be normalized to be exactly one of the numbers −1, 0, 1, uniquely
determined by X. Theorem 2.1 has several different proofs, with approaches
based on elliptic PDE’s and isothermal coordinates, curvature flows, or an
approach based on classification of universal covers of simply connected Rie-
mannian surfaces, just to name a few. We refer the interested reader to the
article [Abi81] for further reading.

We discuss three different approaches to generalizing Theorem 2.1 to the
metric surface setting: the bi-Lipschitz, quasisymmetric, and quasiconformal
variants. A basic motivation for these problems is to understand the ge-
ometry and/or analysis of a nonsmooth surface by reducing to the smooth
setting.

A typical approach in such uniformization problems is to try to identify
different invariants of the model spaces preserved by the uniformization maps
of interest. In the following sections, we highlight some of the connections
and distinctions between the three problems.

3. Bi-Lipschitz uniformization

Consider the sphere S2 endowed with the usual geodesic distance σ of
Gaussian curvature one. We consider for a moment a metric space X that is
a bi-Lipschitz image of S2.
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It is straightforward to verify the following two geometric bi-Lipschitz in-
variants: First, whenever r is smaller than the diameter

diam(X) := sup
x,y∈X

dX(x, y),

the two-dimensional Hausdorff measure of a ball Br of radius r in X is com-
parable to r2. We refer to this property as Ahlfors regularity of X. Note, in
particular, that there exists a constant C > 0 such that

H2
X(Br) ≤ Cr2 for all r > 0. (8)

We define a second invariant, called linear local connectivity (or LLC, for short).
This consists of the conditions defined below, involving a constant λ ≥ 1.

• If Br(x0) is a ball in X and x, y ∈ Br(x0), there exists a compact and
connected set C ⊂ Bλr(x0) containing x and y.

• If Br(x0) is a ball in X and x, y ∈ X \ Br(x0), there exists a compact
and connected set C ⊂ X \ Br/λ(x0) containing x and y.

Since the LLC property is a bi-Lipschitz (and quasisymmetric) invariant, we
ask the following.

Question 3.1 (Bi-Lipschitz uniformization). If X is Ahlfors regular, linearly lo-
cally connected and homeomorphic to S2, does there exists a bi-Lipschitz homeomor-
phism u : S2 → X?

The answer turns out to be negative, and we briefly discuss some coun-
terexamples below. However, when bi-Lipschitz is replaced by quasisymmetry,
Question 3.1 has a positive answer:

Theorem 3.2 (Bonk–Kleiner [BK02]). If X satisfies the assumptions of Ques-
tion 3.1, there exists a quasisymmetry φ : S2 → X.

The authors proved that whenever X is Ahlfors regular and homeomorphic
to S2, the mapping φ exists if and only if X is linearly locally connected. Their
proof uses an interesting discrete version of Theorem 2.1, usually formulated
using circle packings, see [Ste05].

Theorem 3.2 is a particular example of the quasisymmetric uniformization
problem. In fact, under the assumptions of Theorem 3.2, the mapping φ is
also quasiconformal. Hence Theorem 3.2 answers positively also the quasi-
conformal uniformization problem in the class of metric surfaces defined in
Question 3.1.

We elaborate on the connection between Question 3.1 and Theorem 3.2. To
any given pair (X, φ) as in Theorem 3.2, we associate the pullback measure

φ∗H2
X(B) := H2

X(φ(B)) for every Borel B ⊂ S2.



INTRODUCTION 11

Then φ∗H2
X is doubling, i.e., there exists a constant C > 0 such that for every

ball B2r(x), the ball Br(x) satisfies

φ∗H2
X(B2r(x)) ≤ Cφ∗H2

X(Br(x)).

Moreover, up to enlarging C, we also have

C−1D(x, y) ≤
(

φ∗H2
X(B2σ(x,y)(x))

)1/2
≤ CD(x, y) for every x, y ∈ S2 (9)

for the distance D(x, y) = d(φ(x), φ(y)) on the sphere. For a proof of these
properties of φ∗H2

X, we refer the interested reader to [Laa02]. Laakso proved
the result for the Euclidean plane R2 in place of the sphere S2, but a similar
argument works in our case. See also [Sem93, Sem96b, BHS04].

If one replaces the measure µ = φ∗H2
X by some other doubling measure µ

and the distance D by an arbitrary distance Dµ on the sphere, still satisfying

C−1Dµ(x, y) ≤
(

µ(B2σ(x,y)(x))
)1/2

≤ CD(x, y) for every x, y ∈ S2 (10)

for some C > 0, cf. (9), we say that µ is a metric doubling measure. For such a
measure, one can prove that Xµ := (S2, Dµ) is a metric surface satisfying the
assumptions of Question 3.1. In fact,

the change of distance map φµ : S2 → Xµ is a quasisymmetry; (11)

here φµ(x) = x. This observation follows by unwinding the definitions, see
[Laa02].

Metric doubling measures were introduced by David and Semmes in [DS90],
in the Euclidean setting. Having proved many interesting results about such
measures, among them Poincaré inequalities and absolute continuity with re-
spect to the Lebesgue measure, the authors asked in the Euclidean setting the
following question: For which metric doubling measures µ does there exist a
quasiconformal homeomorphism f : S2 → S2 and a constant C ≥ 1 such that

C−1 f ∗H2
S2(B) ≤ µ(B) ≤ C f ∗H2

S2(B) for every Borel set B ⊂ S2? (12)

As explained in [Laa02, BHS04, Bis07], the question of David and Semmes
turns out to be equivalent to Question 3.1, in the following sense. First, if
u : S2 → Xµ is bi-Lipschitz and φµ as in (11), then f = u−1 ◦ φµ satisfies (12).
Conversely, if (12) is satisfied, then u := φµ ◦ f−1 is a bi-Lipschitz parametri-
zation of Xµ.

Laakso was the first to construct an example of a metric doubling measure
which does not satisfy (12), thereby answering Question 3.1 in the negative.
In [Laa02], he constructed an example of a compact and connected set E ⊂ S2

for which there are s > 1 and a continuous weight ω : S2 → [0, ∞) satisfying

C−1σs−1(x, E) ≤ ω(x) ≤ Cσs−1(x, E), (13)
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where σ(x, E) is the spherical distance from x to the set E. The weight and E
were constructed in such a way that the Borel measure

µ(B) :=
∫

B
ω2(x) dH2

S2 , B ⊂ S2 (14)

is metrically doubling on S2. By a careful construction, Laakso proved that
the weighted distance dω in (1) satisfies condition (9). An interesting conse-
quence of his construction is that the Xµ cannot be bi-Lipschitz embedded
into any finite-dimensional Banach space, or any uniformly convex Banach
space. In particular, Xµ cannot be bi-Lipschitz equivalent to S2. Later on,
Bishop [Bis07] used a different construction to find an example of a complete
Ahlfors regular and LLC metric surface X, quasisymmetrically equivalent to
R2, which can be bi-Lipschitz embedded into R3 but not into R2.

We see from the examples of Laakso and Bishop that the geometric variants
of Ahlfors regularity and linear local connectivity are not enough to recog-
nize the bi-Lipschitz images of S2 or R2. For metric surfaces X ⊂ RN, for
some N ≥ 3, satisfying local variants of Ahlfors regularity and linear local
connectivity, there are known necessary and sufficient conditions for X to
admit local parametrizations by bi-Lipschitz homeomorphisms. We refer the
interested reader to [HK11], and to the related papers [Tor94, BL03].

4. Quasisymmetric uniformization

The definition of a quasisymmetric homeomorphism, recall (6), is sensible
and useful even for homeomorphisms between fractal-type spaces. For this
reason, quasisymmetries have found applications in many fields: complex
dynamics [HP09, BM17], group theory [BK02, BK05], uniformization prob-
lems in higher dimensions [Sem93, Sem96b], these examples barely scratch-
ing the surface. See the mentioned articles and the monograph [MT10] for
further information. For the sake of brevity, we focus our attention to the
two-dimensional setting.

Quasisymmetric images of R2 and S2 satisfy the following properties: they
have the LLC property mentioned above, metric doubling property, and 2-
rectifiability [Tys00]. Note that the horned sphere in Figure 1 can be con-
structed in such a way that both the LLC and the 2-rectifiability properties
fail, while the Ahlfors regularity upper bound (8) remains valid, cf. [Raj17,
Proposition 17.1]. Such a horned sphere does not admit a parametrization by
quasisymmetries or bi-Lipschitz mappings.

We highlight some of the results known in the metric surface setting, specif-
ically in the setting of Ahlfors regular and LLC metric surfaces. When X is
homeomorphic to a domain in S2, the question is subtle, and the boundary
structure of X plays a delicate role. Nevertheless, there are known sufficient
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conditions [BK02, Wil08, MW13, RRR19, RR21]. Moreover, when X is home-
omorphic to a compact metric surface, a full analog of Theorem 3.2 is known;
see [GW18, FM22] for the case of orientable surfaces and article [A] for the
case of non-orientable surfaces. In [Wil10], Wildrick constructed quasisym-
metric structures — an atlas of quasisymmetric maps — on metric surfaces
while only assuming local variants of Ahlfors regularity and linear local con-
nectivity.

While every quasisymmetry from the Euclidean plane onto itself is quasi-
conformal (and vice versa), the two properties are typically unrelated when
considering mappings between metric surfaces. We next consider an example
illustrating this fact.

Fix an arbitrary quasisymmetric homeomorphism φ : R3 → R3. Whenever
t ∈ R, the plane Et = {t} × R2 is mapped onto a topological surface Xt =
φ(Et). One can argue, using Fubini’s theorem and the area formula for φ,
that Xt is a metric surface for almost every t. For such a t, it follows from the
work of Tyson [Tys00] that the restriction ft = φ|Et has finite outer dilatation,
with an upper bound KO( ft) ≤ K depending only on φ. In other words, such
ft are weakly quasiconformal. This raises the following question.

Question 4.1. Let φ : R3 → R3 be a quasisymmetry and Et = {t} × R2, for each
t ∈ R. Is ft = φ|Et a quasiconformal homeomorphism onto its image Xt = ft(Et),
for almost every t ∈ R?

Question 4.1 is closely related to two of the thirty-three yes-or-no questions
posed by Heinonen and Semmes in [HS97] (see also [Geh75, Geh76, Väi81,
ABH02, Rom19b, NR21a] and references therein). More specifically, Question
15 asks if the inverse of an arbitrary quasisymmetry from the plane R2 into a
metric surface is absolutely continuous with respect to the two-dimensional
Hausdorff measure, while Question 16 asks if the same is true even when the
target is not a metric surface.

Recently, Romney [Rom19b] answered Question 15 in the negative, thereby
also answering Question 16. Later on, Ntalampekos and Romney constructed
in [NR21a] (counter)examples even in R3. We quote the following special case
of their result:

Theorem 4.2 ([NR21a]). There exists a quasisymmetry φ : R3 → R3 such that
X = φ({0} × R2) is a metric surface, yet φ−1|X sends a set of negligible two-
dimensional Hausdorff measure to a set of positive two-dimensional Hausdorff mea-
sure.

The following observation connects Question 15 to Question 4.1.

Theorem 4.3 (Section 17, [Raj17]). If X is a metric surface and f : R2 → X a
quasiconformal homeomorphism, then f−1 is absolutely continuous with respect to
the two-dimensional Hausdorff measure.
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ξ1 ξ3

ξ2

ξ4

ξ1 ξ3

ξ2

ξ4

Figure 2. The modulus mod(Γ(ξ1, ξ3; R)) of the horizontal
paths joining the vertical sides is equal to the aspect ratio b/a
of the rectangle, while mod(Γ(ξ2, ξ4; R)) = (b/a)−1

We observe from Theorem 4.3 that the homeomorphism φ−1|X from Theo-
rem 4.2 cannot be quasiconformal. Question 4.1 asks if the collection of all t
where this property fails is a negligible set.

5. Quasiconformal uniformization

The goal of this section is to derive some quasiconformal invariants of the
plane R2 and its open subsets, and outline the main results in articles [A], [B],
[C] and [D]. For the former purpose, we introduce the following notation:
Given three subsets A, B, C of X, Γ(A, B; C) denotes the collection of paths
starting at A, ending at B, with image lying in C.

5.1. Rectangles and the Grötzsch problem. Given R = [0, a]× [0, b], we de-
note by ξ1, ξ2, ξ3, and ξ4 its left, bottom, right and top sides.

Fix four numbers a, a′, b, b′ > 0 and consider the rectangles R = [0, a]× [0, b]
and R′ = [0, a′]× [0, b′]. The Grötzsch problem asks the following: What is
the smallest K for which there exists a K-quasiconformal homeomorphism
from R onto R′, sending sides to sides? That is, sending ξi to ξ ′i for each
i = 1, 2, 3, 4. It turns out that the unique linear map satisfying these properties
has the minimal K.

The problem can be solved by considering the modulus of the path family
Γ = Γ(ξ1, ξ3; R) joining the left side ξ1 of R to the right side ξ3. The esti-
mate mod Γ ≤ b/a follows by considering the test function ρ(z) = χR(z)/a,
where χR is the characteristic function of the rectangle R. The lower bound is
established by considering an arbitrary admissible ρ for Γ and the foliation
of R by the horizontal arcs γt = [0, a] × {t}, for 0 ≤ t ≤ b, and by apply-
ing Fubini’s theorem and Hölder’s inequality. Similarly, for the dual family
Γ∗ = Γ(ξ2, ξ4; R) joining the other two sides, we obtain mod Γ∗ = (b/a)−1;
see Figure 2.
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Having fixed a K-quasiconformal homeomorphism φ : R → R′ mapping
sides to sides, we observe that

1
K

mod Γ(ξ1, ξ3; R) ≤ mod Γ(ξ ′1, ξ ′3; R′) ≤ K mod Γ(ξ1, ξ3; R).

Since mod Γ(ξ ′1, ξ ′3; R′) = b′/a′, we conclude that

K ≥ max
{

mod Γ(ξ1, ξ3; R)
mod Γ(ξ ′1, ξ ′3; R′)

,
mod Γ(ξ ′1, ξ ′3; R′)
mod Γ(ξ1, ξ3; R)

}

= max





a
b

(
a′

b′

)−1

,

(
a
b

(
a′

b′

)−1
)−1



 ≥ 1. (15)

Observe, in particular, that if φ is known to be 1-quasiconformal, then the in-
equalities (15) force the aspect ratios a/b and a′/b′ of R and R′ to coincide. If,
on the other hand, the aspect ratios are not the same, every K-quasiconformal
homeomorphism R → R′, taking sides to sides, satisfies K > 1. In this
manner, we have found a conformal invariant of rectangles. For general Rie-
mannian surfaces, there are more subtle conformal invariants and several au-
thors have contributed to the research of the invariants, see the monographs
[AS60, Cou77, Ahl78, Hub06, Hub16] and references therein.

5.2. Quadrilaterals and the duality principle. While we were investigating
the Grötzsch problem for a rectangle R = [0, a]× [0, b], we noticed that

mod Γ(ξ1, ξ3; R)mod Γ(ξ2, ξ4; R) = 1. (16)

Next, fix a subset R′ of a metric surface X and the rectangle R as above, and
suppose the existence of a K-quasiconformal homeomorphism φ : R → R′.
We denote ξ ′i := φ(ξi) for every i = 1, 2, 3, 4 and κ := K2. By applying (16),
we observe the following:

κ−1 ≤ mod Γ(ξ ′1, ξ ′3; R′)mod Γ(ξ ′2, ξ ′4; R′) ≤ κ. (17)

Hence the subset R′ almost satisfies the duality principle (16). The Riemann
mapping theorem implies that whenever R′ ⊂ R2 we may take κ = 1 in (17).

In the sequel, any R′ for which there exists a homeomorphism f : [0, 1]×
[0, 1] → R′ is called a quadrilateral. The fixed homeomorphism determines a
notion of a left, bottom, right and top sides of R′, by considering the images
of the corresponding sides of [0, 1] × [0, 1], and labeling the sides ξ ′1, ξ ′2, ξ ′3
and ξ ′4 as above.

5.3. Annulus. The Grötzsch problem has a version on Euclidean annuli. For
this purpose, fix an arbitrary point x ∈ R2 and two pairs of radii 0 < r < R
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and 0 < r′ < R′. The modified problem asks to estimate the minimal K for
which there exists a K-quasiconformal homeomorphism taking the annulus

A(x, r, R) := {y : r < d(y, x) < R}
onto the annulus A(x′, r′, R′) = {y : r′ < d(y, x′) < R′}.

We are not going through the detailed argument, but one natural confor-
mal invariant relates to the paths joining the complementary components of
the annulus: let Γ(x, r, R) denote the collection of all the paths joining the ball
Br(x) to the complement of BR(x). Once again, by finding an appropriate ad-
missible function, and by arguing using Fubini’s theorem, polar coordinates,
and Hölder’s inequality, it is possible to establish

mod Γ(x, r, R) =
2π

log R
r

.

The exact formula is not important for us, but in the sequel the following fact
is:

lim
r→0+

mod Γ(x, r, R) = 0 for every x ∈ R2 and all R > 0. (18)

Next, we fix an open set Ω in the plane and a metric surface X, and suppose
the existence of a quasiconformal mapping ϕ : Ω → X. We investigate the
consequences of (18).

First, consider the path family Γ(x, r, R) on X. We claim that

lim
r→0+

mod Γ(x, r, R) = 0 for every x ∈ X and all R > 0. (19)

Whenever (19) fails at a given x ∈ X, we say that x has positive capacity.
Otherwise, we say that x has negligible capacity.

Observe that there are more paths whenever R is lowered so

R 7→ mod Γ(x, r, R)

is decreasing. Hence (19) holds at a given x ∈ X if it holds at x for all small
radii R.

On the other hand, if we fix a small enough r > 0, every path in Γ(x, r, R)
must contain a subpath joining the boundary components of the image of an
Euclidean annulus A(x′, s, S). Once again, basic monotonicity properties of
modulus then yield

mod Γ(x, r, R) ≤ mod ϕ(Γ(x′, s, S)) ≤ K mod Γ(x′, s, S).

Observe that as r → 0+, we may also pass to the limit s → 0+. Hence (18)
and our monotonicity considerations imply (19). Thus every point in X has
negligible capacity.
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5.4. Reciprocality. Based on the observations (17) and (19), Rajala [Raj17]
posed the following definition.

Definition 5.1. Let X be a metric surface. We say that X is κ-reciprocal if the
conditions (20)-(22) hold: Every quadrilateral R′ satisfies

κ−1 ≤ mod Γ(ξ ′1, ξ ′3; R′)mod Γ(ξ ′2, ξ ′4; R′), (20)

κ ≥ mod Γ(ξ ′1, ξ ′3; R′)mod Γ(ξ ′2, ξ ′4; R′), (21)

and
lim

r→0+
mod Γ(x, r, R) = 0 for every x ∈ X and all R > 0. (22)

A metric surface is reciprocal if it is κ-reciprocal for some κ > 0.

It is now understood that (20) holds for some universal κ > 0 in every met-
ric surface [RR19, EP21], with the sharp constant (4/π)2 obtained in [EP21].
Hence only (21) and (22) can fail to hold in a given metric surface.

It turns out that whenever the upper Ahlfors regularity (8) holds on a
metric surface X, then X is reciprocal [Raj17, Theorem 1.6]. In fact, it is
enough to have the following:

sup
x∈X

lim sup
r→0+

H2(Br(x))
πr2 ≤ C, see [RRR19]. (23)

Property (23) is readily verified, for example, for graphs of |x|α over R2 for
each 0 < α ≤ 1. The case α = 1 corresponds to the case of a cone which is a
bi-Lipschitz image of the plane, while in the case 0 < α < 1 the graph is not
linearly locally connected.

Nonsmooth surfaces such as the Alexander’s horned sphere in Figure 1 can
be constructed in such a manner that (23) holds while linear local connectivity
fails. For related constructions, see [Fed69, 4.2.25, pages 420-423], [HaZ16]
and [Raj17, Proposition 17.1].

Example 5.2. We consider the following example for which (21) and (22) fail. Let E
denote the vertical slit E = {0} × [0, 1] and as weight ω consider the characteristic
function χR2\E of R2 \ E. We define

dω(x, y) = inf
γ

∫

γ
ω ds,

where the infimum is taken over all absolutely continuous paths joining x to y, recall
(1). Observe that dω(x, y) = 0 for every x, y ∈ E.

We consider the quotient space Xω, identifying x and y precisely when dω(x, y) =
0. We endow Xω with the associated quotient distance and observe that Xω is a
metric surface homeomorphic to R2.
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E

ξ ′4

ξ ′2

ξ ′3

Figure 3. The red and blue horizontal arcs have lengths δ and
2δ, respectively. For each 0 < δ < 1/3, the modulus in Xω of
the concatenations of the dashed blue paths has a lower bound
independent of δ. In particular, (21) and (22) fail on Xω.

Fix 1 > δ > 0. Consider in Xω the quadrilateral R′ corresponding to the rectangle
[0, 3δ]× [0, 1], endowed with the boundary decomposition ξ ′1 = ([0, δ]× {0, 1}) ∪
E, ξ ′3 = {3δ} × [0, 1], with ξ ′2 = [δ, 3δ]× {0} and ξ ′4 = [δ, 3δ]× {1}.

Observe that the modulus Mδ of Γ(ξ ′1, ξ ′3; R′) in the quotient space Xω satisfies

1
3δ

≤ Mδ,

equaling the corresponding Euclidean modulus. In contrast, the modulus M∗,δ of the
dual family Γ(ξ ′2, ξ ′4; R′) in Xω satisfies

1
c
≤ M∗,δ for every δ > 0 (24)

for some constant c > 0. The failure of (21) is seen by considering the product
MδM∗,δ and passing to the limit δ → 0+, while the failure of (22) follows from the
lower bound (24).

5.5. Metric Riemann mapping theorem. We now state [Raj17, Theorem 1.4].

Theorem 5.3. Let X be a metric surface homeomorphic to R2. Then X is reciprocal
if and only if there exists a domain Ω ⊂ R2 and a quasiconformal homeomorphism
φ : Ω → X.
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The "if"-direction follows from the elementary computations we did in the
previous sections, while the other direction requires an elaborate construc-
tion. The basic idea is to start with a quadrilateral R′ ⊂ X in a κ-reciprocal
space and prove the existence of a K-quasiconformal homeomorphism onto
some rectangle R = [−a, a] × [−b, b], with K depending only on κ. The
next step involves exhausting the space X by an increasing sequence of such
quadrilaterals R′ and applying a normal family argument to suitably renor-
malized family of the "metric Riemann maps". This approach is successful
because the obtained family consists of K-quasiconformal mappings, for uni-
form K.

It is simple to extend Theorem 5.3 to reciprocal X homeomorphic to S2.
The key point is that each point in X has negligible capacity. Based on this
fact, Rajala obtained a new proof of Theorem 3.2, see [Raj17, Corollary 1.7].

5.6. Optimizing parametrizations. Let X be a metric surface and Ω′ ⊂ X
homeomorphic to R2. Theorem 5.3 yields a necessary and sufficient condition
for there to exist a quasiconformal homeomorphism φ : Ω → Ω′ for some
Ω ⊂ R2.

If such a parametrization exists, we wish to make the maximal dilatation
of the mapping as small as possible, in analogy to the 1-quasiconformality
result in Theorem 2.1. This can be achieved as follows: it turns out that the
quasiconformality of φ implies some Sobolev regularity for φ [Wil12], and
the Sobolev regularity implies the existence of a measurable field of norms
Nφ on Ω encoding some analytic information about the mapping φ. This is
made precise in [Raj17, LW17, Rom19a, ILP21] and article [A], respectively.

Rajala associated in [Raj17] to the field of norms Nφ a measurable Rie-
mannian norm field G, by associating to each of unit balls of Nφ its John ellipse
[TJ89] and setting G to be the norms induced by the John ellipses. The precise
definition is not important for the purposes of this introduction, but the key
point is that the identity map from (R2, Nφ,x) to (R2, Gx) is 2-quasiconformal,
for almost every x ∈ Ω. This implies that G is uniformly elliptic, in a suitable
sense. This allowed him to apply the so-called measurable Riemann mapping
theorem [AB60, AIM09] to find a quasiconformal homeomorphism f : U → Ω
such that the composition of G with the differential of f defines on U a mea-
surable Riemannian norm field whose unit balls are Euclidean balls (possibly
with varying radii). Now, by repeating the aforementioned computations
for φ ◦ f , it turns out that φ ◦ f is 2-quasiconformal. We refer the interested
reader to [Raj17, Section 14] for further details.

Later on, Romney verified that when the John ellipses above are replaced
by the so-called distance ellipses (see [Rom19a] or article [A]), the argument
above yields the existence of a (π/2)-quasiconformal parametrization Ω′.
More precisely, Romney established the following:
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Theorem 5.4. Let X be a metric surface homeomorphic to R2. Then X is reciprocal
if and only if there exists an open set Ω ⊂ R2 and a quasiconformal homeomorphism
φ : Ω → X satisfying

π

4
mod Γ ≤ mod φΓ ≤ π

2
mod Γ for all path families on Ω. (25)

Theorem 5.4 answered in the positive a conjecture in [Raj17] about the op-
timality of (25). Indeed, in Example 2.2 of [Raj17], Rajala solves the Grötzsch
problem for quasiconformal homeomorphisms mapping rectangles of (R2, ∥ ·
∥∞), endowed with the supremum norm ∥ · ∥∞, into the Euclidean plane R2

with the Euclidean norm. To obtain the claimed optimality of (25), two fam-
ilies of rectangles must be considered. The first family consists of rectangles
with sides parallel to the coordinate axes and the second family of such rect-
angles rotated by (π/4) radians.

When optimizing the quasiconformal parametrization using the approach
by Romney, the composition φ ◦ f has the key property that the associated
Riemannian norm field G, corresponding to the distance ellipses of the norm
field Nφ◦ f , is such that the unit ball of Gx is a Euclidean ball of some radius
rx > 0 for almost every x. Whenever this property holds for some quasicon-
formal homeomorphism φ′ : Ω → Ω′ for some open Ω ⊂ R2 and Ω′ ⊂ X, we
say that φ′ is an isothermal parametrization.

5.7. Quasiconformal surfaces. A metric surface X is a quasiconformal surface
if there exists a countable collection of open sets Ω′

i ⊂ X and Ωi ⊂ R2

together with quasiconformal homeomorphisms φi : Ωi → Ω′
i, with X =⋃∞

i=1 Ωi. By arguing as in the previous section, we may assume that each
φi is an isothermal parametrization. The main theorem of article [A] states
the following:

Theorem 5.5. For every quasiconformal surface X, there exists a Riemannian sur-
face M and a quasiconformal homeomorphism u : M → X satisfying

π

4
mod Γ ≤ mod uΓ ≤ π

2
mod Γ for all path families on M.

The basic idea of article [A] is to consider the maximal collection I of all
isothermal parametrizations mapping into X. The collection I defines on X a
conformal structure since the transition maps between the elements of this col-
lection are 1-quasiconformal diffeomorphisms. Then a variant of Theorem 2.1
implies the existence of a Riemannian norm field G such that I consists of all
1-quasiconformal diffeomorphic parametrizations of the Riemannian surface
XG := (X, dG). It turns out that the identity map u : XG → X satisfies the
properties claimed in Theorem 5.5. Note that the existence of u implies that
every quasiconformal surface is reciprocal. This implies that reciprocality is
a local property.
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The XG can be assumed to be complete and have constant curvature −1, 0,
or 1, which basically follows from the construction of G, or from Theorem 2.1.
With this further assumption, whenever X is a compact, Ahlfors regular and
LLC metric surface, it is possible to prove that u is a quasisymmetry. This
statement is made quantitative in article [A].

Whenever X is a metric surface homeomorphic to a domain in the sphere
S2, the XG admits a 1-quasiconformal embedding into S2 [AS60, Section III.4].
This fact was applied in [RR21] to study the quasisymmetric uniformization
problem, for finitely connected X. It would be interesting to know if the
approach of [RR21], or a close variant, works in the setting of [MW13] of
infinitely connected planar domains.

5.8. Weighted quasiconformal surfaces. We considered in article [B] exam-
ples of metric surfaces constructed using the weighted distances as in (1).

If the weight has a uniform lower bound c > 0 and an upper bound C < ∞,
it is not difficult to see that the corresponding Xω := (S2, dω) is bi-Lipschitz
equivalent to the plane. When no such lower bound exists, it is not necessar-
ily the case that dω is a distance, as the vertical slit Example 5.2 illustrates.
For this reason, we need to consider the quotient mapping πω : S2 → Xω

identifying each point x with the set {y : dω(x, y) = 0}. We say that a weight
ω is reciprocal if the quotient space Xω, endowed with the quotient distance,
is a quasiconformal surface.

In article [B] we consider the following weights ωp := σ(·, E)p−1, for p ≥ 1,
where σ(x, E) is the spherical distance from the point x to a given set E. The
main results of article [B] establish the following:

Theorem 5.6. Let E ⊂ S2 be a compact set with Hausdorff dimension s with S2 \ E
connected and nonempty.

If there exists a p > max {s, 1} such that ωp is a reciprocal weight, then the set E
is removable for conformal mappings.

Conversely, if E is removable for conformal mappings, then ωp is a reciprocal
weight for every p ≥ 1.

We say that a compact set E ⊂ S2 is removable for conformal mappings if every
1-quasiconformal embedding from S2 \ E into S2 is the restriction of a Möbius
transformation. This notion was studied by Ahlfors and Beurling in [AB50]
and, rather curiously, Theorem 5.6 connects this purely Euclidean notion to
the quasiconformal uniformization problem.

We note that Theorem 5.6 is sharp in the following sense: In [Sem96b],
Semmes proved for a suitable self-similar arc E ⊂ S2 of Hausdorff dimen-
sion s > 1 that the weight ωs(x) defines a metric doubling measure via the
formula

µ(B) :=
∫

B
ω2

s (x) dH2
S2(x), recall (14).
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Since the set E is homeomorphic to [0, 1], it cannot be removable for confor-
mal mappings [AB50], as a consequence of the Riemann mapping theorem.
Note also the similarity of these weights to the example (13) by Laakso.

In article [B], we construct an example of a complete and geodesic met-
ric surface X (π/2)-quasiconformally equivalent to R2 in such a way that
X is not 1-quasiconformally equivalent to any metric surface Z, with Z bi-
Lipschitz embeddable into R2. This implies that the 1-quasiconformal equiva-
lence classes of quasiconformal surfaces do not necessarily contain representa-
tives that can be bi-Lipschitz parametrized by Riemannian surfaces. However,
it is not clear if there always exists an element of the equivalence class that
satisfies local versions of Ahlfors regularity and LLC.

5.9. Boundary behaviour of quasiconformal mappings. In article [C] of the
dissertation, we are interested in the boundary behaviour of quasiconformal
homeomorphisms. More precisely, we generalize Carathéodory’s theorem from
classical complex analysis. The classical result says that every quasiconformal
homeomorphism between the interiors of quadrilaterals R, R′ ⊂ R2 extends
to a quasiconformal homeomorphism between the quadrilaterals.

In [C], we study quasiconformal Jordan domains: a metric surface is a
quasiconformal Jordan domain if X is a metric surface for which there exists a
quasiconformal homeomorphism ϕ : D → X, with X having the additional
property that the completion X has finite two-dimensional Hausdorff mea-
sure and ∂X := X \ X is homeomorphic to the unit circle S1.

One of the main results of the article proves that given an arbitrary quasi-
conformal Jordan domain and a quasiconformal homeomorphism ϕ : D → X,
there exists a weakly quasiconformal extension Φ : D → X of ϕ. It is natural
to consider when this improves to quasiconformality. The main result of the
article proves the following.

Theorem 5.7. A given quasiconformal homeomorphism φ : D → X admits a qua-
siconformal extension Φ : D → X if and only if every point of ∂X has negligible
capacity in X.

Example 5.2 illustrates that some geometric conditions on ∂X, such as
points having negligible capacity, are necessary to guarantee the quasicon-
formality of Φ. Interestingly, φ can admit a homeomorphic extension Φ even
without the extension being quasiconformal. Such a situation arises by study-
ing the metric surfaces Xω as in the previous section, for weights ω = χR2\E
for suitable Cantor sets E ⊂ R × {0}.
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We also consider some sufficient conditions which guarantee that the re-
striction of the quasiconformal homeomorphism Φ to S1 is a quasisymmet-
ric parametrization of ∂X, and investigate sufficient conditions for the bi-
Lipschitz embeddability of ∂X into plane. These questions are closely con-
nected to the catalogue of quasisymmetric images of S1, see [Mey11, HM12].

5.10. Gluing hemispheres. In article [D] of the dissertation, we construct
metric surfaces homeomorphic to S2 by starting with an orientation-preserving
homeomorphism g : S → S, where S is the equator of S2.

Let Z1 and Z2 denote the open southern and northern hemispheres of S2,
respectively. We obtain the metric surface Zg from g in such a way that there
exists a 1-Lipschitz local isometric embedding ιi : Zi → Zg, the 1-Lipschitz
extension to Zi mapping S monotonically onto the set seam Sg, for i = 1, 2,
with images of Z1 and Z2 being disjoint.

We are not going to outline the precise construction but mention some of
our main results.

Theorem 5.8. Let g : S → S be an orientation-preserving homeomorphism. Then
the following are equivalent, quantitatively:

• g is L-bi-Lipschitz,
• there exists an L′-bi-Lipschitz homeomorphism Φ : S2 → Zg, and
• there exists a constant C > 0 such that

sup
z∈Sg

lim inf
r→0+

H2
Zg
(B(z, r))

πr2 ≤ C.

The equivalence between the second and third conditions is surprising
since the pointwise information about the seam Sg improves to Ahlfors reg-
ularity and the LLC property, and even to the existence of a bi-Lipschitz
parametrization of Zg. In particular, if g is non-bi-Lipschitz, the conclusion
that Zg is a quasiconformal surface does not follow from the two-dimensional
density upper bound (23), for example, and other methods need to be used.

Before stating one of the main results of article [D], Theorem 5.9 below,
we state a definition. We say that an orientation-preserving homeomorphism
g : S → S is a welding homeomorphism if there exist quadrilaterals R1, R2 ⊂ S2

and orientation-preserving 1-quasiconformal homeomorphisms ϕi : Zi → Ri,
with R1 ∩ R2 = Γ homeomorphic to S, and g = ϕ−1

2 ◦ ϕ1|S. We call any such
Γ a welding curve of g.

Theorem 5.9. For every welding homeomorphism g : S → S, there exists a weakly
quasiconformal f : S2 → Zg, with KO( f ) = 1.
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Figure 4. The von Koch snowflake. The welding homeomor-
phisms corresponding to the snowflake are quasisymmetries.

The proof of Theorem 5.9 is somewhat involved, requiring some careful
harmonic analysis of the welding curves of g, and proving an intimate con-
nection between the one-dimensional Hausdorff measures on the seam Sg
and on the (tangents of the) welding curve.

Theorems 5.8 and 5.9 are connected to metric doubling measures. Indeed,
we establish that the measure µ(E) := H2

Zg
( f (E)), for f as in Theorem 5.9, is

a metric doubling measure if and only if the welding homeomorphism g is
bi-Lipschitz.

Examples of welding homeomorphisms include the class of orientation-
preserving quasisymmetries. It would be natural to expect that whenever g is
a quasisymmetry, the mapping f in Theorem 5.9 is a 1-quasiconformal home-
omorphism. However, this turns out to be false. Indeed, when g and its in-
verse fail to be absolutely continuous with respect to length measures, points
of positive capacity in Zg can exist. For example, it is sufficient to consider
the welding homeomorphisms corresponding to the von Koch snowflake; see
Figure 4. Nevertheless, we are able to guarantee that Zg is a quasiconformal
surface in some situations.

Proposition 5.10. Let g : S → S be an orientation-preserving quasisymmetry and
g−1 absolutely continuous. Then Zg is a quasiconformal surface.

Some assumption similar to quasisymmetry is needed. In fact, based on
[Oik61, Example 1] and [Vai89, Theorem 3], we constructed an example of a
Lipschitz g−1 that is locally bi-Lipschitz outside a single point z0 ∈ S, yet the
corresponding point x0 ∈ Sg has positive capacity in Zg.
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It turns out that g being a quasisymmetry is not strictly needed. For ex-
ample, if g admits an extension to a homeomorphism H : S2 → S2 that is
a mapping of exponentially integrable distortion, then the absolute continuity
of g−1 is still enough to guarantee that Zg is a quasiconformal surface. The
interested reader is refered to article [D] for further details.

6. Open questions

6.1. Weakly quasiconformal mappings. In recent years, a lot of research has
been done towards understanding metric surfaces which are not quasicon-
formal surfaces.

For a simple example of such a surface, we consider the metric surface Xω

constructed in Example 5.2. As outlined in Figure 3, there are obstructions for
Xω admitting a a quasiconformal parametrization. Nevertheless, the space
Xω admits a weakly quasiconformal parametrization: the quotient map

x 7→ {y : dω(x, y) = 0}
is such a mapping.

Using the recent results [MW21, NR21b], we now know the following:
whenever X is metric surface with a length distance (length metric surface),
and R ⊂ X a quadrilateral with rectifiable boundary, there exists a weakly
quasiconformal map f : D → R.

Whenever such a mapping exists, f can always be assumed to satisfy
KO( f ) ≤ 4/π. This can be seen by employing the proof method from
Section 5.6, or by applying the energy-minimization scheme developed by
Lytchak and Wenger in [LW17, LW18, LW20] in the context of metric spaces
admitting quadratic isoperimetric inequalities. This interesting result by [MW21,
NR21b] is related to the following open question by Rajala and Wenger (see
e.g. article [B], [MW21] or [NR21b]):

Question 6.1. If X is a metric surface homeomorphic to R2, does there exists a
domain Ω ⊂ R2 and a weakly quasiconformal f : Ω → X?

The question has a straight-forward generalization to the non-simply con-
nected setting.

It is not difficult to see that whenever a metric surface is a quasiconformal
surface, every weakly quasiconformal map is a quasiconformal homeomor-
phism, see Lemma 6.3. Moreover, if f is weakly quasiconformal and f−1(x0)
is a connected subset of Ω containing at least two points, then x0 has positive
capacity. It would be interesting to know the following:

Question 6.2. Suppose that X is a metric surface homeomorphic to R2 and x0 ∈ X
has positive capacity. Does there exists a weakly quasiconformal f ′ : Ω′ → X for
some Ω′ ⊂ R2 such that ( f ′)−1(x0) contains more than a single point?
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This is closely related to [CR22], where Creutz and Romney investigate
the structure of the fibers of weakly quasiconformal mappings in various
contexts. We also observe the following:

Lemma 6.3. Let X be a metric surface homeomorphic to R2. If f : Ω → X is weakly
quasiconformal and X is reciprocal, then f is a quasiconformal homeomorphism.

The basic idea is the following: if there exists x0 ∈ X such that f−1(x0)
is not a point, then x0 has positive capacity. Indeed, there exists a compact
and connected set E ⊂ Ω \ f−1(x0) such that mod Γ(E, f−1(x0); Ω) > 0; this
follows by slightly modifying the idea in the vertical slit example, see Figure 3
or from the 2-Loewner property of R2 [Hei01, Example 8.24.]. Then the weak
quasiconformality implies mod Γ( f (E), x0; X) > 0 hence necessarily x0 has
positive capacity.

Next, if f is a weakly quasiconformal homeomorphism and φ : Ω′ → X
is a quasiconformal homeomorphism for Ω′ ⊂ R2, then h = φ−1 ◦ f is
a weakly quasiconformal homeomorphism between planar domains. Such
mappings are always quasiconformal homeomorphisms, see [Res93, AIM09,
Raj17]. These facts imply Lemma 6.3.

Theorem 4.2 gives an example of a metric surface X that admits a weakly
quasiconformal (even quasisymmetric) parametrization f : R2 → X which
is not quasiconformal (due to Theorem 4.3). Hence X is not reciprocal. It
would be interesting to know if Question 6.2 has a positive answer in this
special case.

6.2. Duality principles. Recently, there has been advances in understanding
duality principles akin to (20) and (21) in the metric surface setting. In [RR19],
it is proved that the duality lower bound (20) holds in every metric surface
with a universal constant κ0, with the sharp version κ0 = (4/π)2 proved in
[EP21].

The authors of [EP21] also proved higher dimensional versions of their
results, see also Section 6.3 below. In the context of complete metric measure
spaces having a doubling measure and a local (1, 1)-Poincaré inequality, a
full analog of the duality principle holds; see [LR21, JL20]. See also [Zie67,
AO99, Rom08, Loh20, Loh21, Zha21] for related duality results.

A metric space X is a PI metric surface if X is a complete metric surface,
with H2

X doubling, and supporting a local (1, 1)-Poincaré inequality.

Question 6.4. Let X be a PI metric surface. Does there exists a constant κ > 0
such that the duality upper bound (21) holds for every quadrilateral R′ ⊂ X with the
constant κ?

Question 6.4 does not immediately follow from the duality results in [LR21,
JL20] and the reason is the following. Given the path family Γ := Γ(ξ ′1, ξ ′3; R′)
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in a PI metric surface, the dual family Γ∗ considered in [LR21, JL20] is not
necessarily related to any path modulus, in particular to Γ(ξ ′2, ξ ′4; R′). Indeed,
the collection Γ∗ consists of sets of finite perimeter separating the sets ξ1 and
ξ3 within R, in a suitable sense. Moreover, instead of using the length mea-
sure to define admissible functions as in (2), the length measure is instead
replaced by a suitable codimension one measure (or the perimeter measure).
Therefore, being able to compare mod Γ(ξ2, ξ4; R) to the dual modulus con-
sidered in [LR21, JL20] requires careful analysis of the essential boundary of
sets of finite perimeter and the codimension one measure in the PI metric
surface context.

We also ask the following related question.

Question 6.5. Are there PI metric surfaces which have points of positive capacity?
What is the Hausdorff dimension of the set of points which have positive capacity?

Let X be a PI metric surface and x0 ∈ X. The point x0 having positive
capacity is closely related to the (non-essential) singularities of Green func-
tions analyzed, for example, in [BBL20, BBL21]. Points of positive capacity
also have interesting connections to the duality properties of Sobolev spaces
and capacities investigated in [AS21], see [AS21, Theorem 5.7]. It is always
the case on metric surfaces that the collection of points having positive ca-
pacity is negligible with respect to the two-dimensional Hausdorff measure.
However, not much else is known.

We recall that every PI metric surface X is bi-Lipschitz equivalent to a
geodesic PI metric surface [Che99, Kei03]. Hence we know that every quadri-
lateral with rectifiable boundary in X is the weakly quasiconformal image of
the closed Euclidean disk, as a consequence of [MW21, NR21b]. Therefore
it is reasonable to investigate Questions 6.4 and 6.5 using such a mapping
directly.

6.3. Generalized reciprocality. The duality principle (16) actually holds in
a much stronger form. To formulate this properly, we denote by modp the
p-modulus where the number 2 in (3) is replaced by 1 < p < ∞. Then, it turns
out that whenever 1 < p < ∞ and q = p/(p − 1), every quadrilateral R ⊂ R2

satisfies
(
modp Γ(ξ1, ξ3; R)

)1/p (modq Γ(ξ2, ξ4; R)
)1/q

= 1; (26)

see, for example, [Zie67, Rom08]. In [EP21], the authors established in an
arbitrary metric surface X and quadrilateral R ⊂ X the sharp lower bound

(
modp Γ(ξ1, ξ3; R)

)1/p (modq Γ(ξ2, ξ4; R)
)1/q ≥ π

4
. (27)

Motivated by (26), (27), and Definition 5.1, we state the following definition.
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Definition 6.6. A metric surface X is κ-(p, q)-reciprocal if 1 < p ≤ 2, q =
p/(p − 1), and the conditions (28) and (29) hold: Every quadrilateral R ⊂ X
satisfies

κ ≥
(
modp Γ(ξ1, ξ3; R)

)1/p (modq Γ(ξ2, ξ4; R)
)1/q , (28)

and
lim

r→0+
modp Γ(x, r, R) = 0 for every x ∈ X and all R > 0. (29)

A metric surface is (p, q)-reciprocal if it is κ-(p, q)-reciprocal for some κ > 0.

We note that being (p, q)-reciprocal is a bi-Lipschitz invariant and every
Riemannian surface is 1-(p, q)-reciprocal (notice 1 < p ≤ 2 in the definition).
In fact, the density upper bound (23) is strong enough to imply (28), with
only minor modifications needed to the proof of [RRR19, Proposition 3.9], the
proof there written in the case p = 2. A consequence of Hölder’s inequality
is that if (29) holds for p = 2, then it also holds for all 1 ≤ p < 2. Thus,
if X is a metric surface satisfying the density upper bound (23), then X is
(p, q)-reciprocal.

Question 6.7. Let X be a metric surface and 1 < p < 2. If X is (p, q)-reciprocal,
is X (p′, q′)-reciprocal for some p < p′ ≤ 2 and q′ = p′/(p′ − 1)? What about
1 < p′ < p?

We also ask the following:

Question 6.8. Let 1 < p < 2. If X is a (p, q)-reciprocal metric surface homeomor-
phic to R2, does there exists a domain Ω ⊂ S2 and a homeomorphism φ : Ω → X
satisfying

modp φΓ ≤ K modp Γ for all Γ on Ω? (30)

It might seem reasonable to expect that whenever X is as in Question 6.8,
then there exists φ : Ω → X that satisfies

K−1 modp Γ ≤ modp φΓ ≤ K modp Γ for all Γ on Ω. (31)

However, (31) is too strong of a condition in the generality of Question 6.8, as
we argue next. It is known that every complete Ahlfors regular LLC metric
surface X supports a local (1,1)-Poincaré inequality [Sem96a]. Therefore it is
possible to prove for such X, see e.g. [BBL21, Theorem 1.1], that for every
diam X/4 > R0 > 0,

c−1r2−p ≤ modp Γ(x, r, R) ≤ cr2−p whenever 0 < 2r ≤ R ≤ R0, (32)

for a constant c depending on R0 and X but not on the point x ∈ X. Based
on (32), it is not difficult to see that if there exists a homeomorphism φ from
S2 onto X satisfying (31), then φ is (locally) bi-Lipschitz. An analogous result
is proved in [HKM92, Theorem 5.7] in the Euclidean setting.
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It is now enough to recall the example by Laakso from Section 3. He
constructed on S2 a metric doubling measure µ for which Xµ = (S2, Dµ)
cannot be bi-Lipschitz embedded into any finite-dimensional Banach space.
In particular, no homeomorphism φ : S2 → Xµ satisfies (31) for some 1 < p <
2.

References

[AB50] Lars Ahlfors and Arne Beurling. Conformal invariants and function-theoretic null-
sets. Acta Math., 83:101–129, 1950.

[AB60] Lars Ahlfors and Lipman Bers. Riemann’s mapping theorem for variable metrics.
Ann. of Math. (2), 72:385–404, 1960.

[ABH02] Kari Astala, Mario Bonk, and Juha Heinonen. Quasiconformal mappings with
Sobolev boundary values. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 1(3):687–731, 2002.

[Abi81] William Abikoff. The uniformization theorem. Amer. Math. Monthly, 88(8):574–592,
1981.

[Ahl78] Lars V. Ahlfors. Complex analysis. International Series in Pure and Applied Mathe-
matics. McGraw-Hill Book Co., New York, third edition, 1978. An introduction to
the theory of analytic functions of one complex variable.

[AIM09] Kari Astala, Tadeusz Iwaniec, and Gaven Martin. Elliptic partial differential equations
and quasiconformal mappings in the plane, volume 48 of Princeton Mathematical Series.
Princeton University Press, Princeton, NJ, 2009.

[AO99] Hiroaki Aikawa and Makoto Ohtsuka. Extremal length of vector measures. Ann.
Acad. Sci. Fenn. Math., 24(1):61–88, 1999.

[AS60] Lars V. Ahlfors and Leo Sario. Riemann surfaces. Princeton Mathematical Series, No.
26. Princeton University Press, Princeton, N.J., 1960.

[AS21] Luigi Ambrosio and Giuseppe Savaré. Duality properties of metric Sobolev spaces
and capacity. Math. Eng., 3(1):Paper No. 1, 31, 2021.

[BBL20] Anders Björn, Jana Björn, and Juha Lehrbäck. Existence and almost uniqueness for
p-harmonic Green functions on bounded domains in metric spaces. J. Differential
Equations, 269(9):6602–6640, 2020.

[BBL21] Anders Björn, Jana Björn, and Juha Lehrbäck. Volume growth, capacity estimates,
p-parabolicity and sharp integrability properties of p-harmonic Green functions.
arXiv e-prints, page arXiv:2101.11486, January 2021.

[BHS04] Mario Bonk, Juha Heinonen, and Eero Saksman. The quasiconformal Jacobian prob-
lem. In In the tradition of Ahlfors and Bers, III, volume 355 of Contemp. Math., pages
77–96. Amer. Math. Soc., Providence, RI, 2004.

[Bis07] Christopher J. Bishop. An A1 weight not comparable with any quasiconformal Jaco-
bian. In In the tradition of Ahlfors-Bers. IV, volume 432 of Contemp. Math., pages 7–18.
Amer. Math. Soc., Providence, RI, 2007.

[BK02] Mario Bonk and Bruce Kleiner. Quasisymmetric parametrizations of two-
dimensional metric spheres. Invent. Math., 150(1):127–183, 2002.

[BK05] Mario Bonk and Bruce Kleiner. Conformal dimension and Gromov hyperbolic
groups with 2-sphere boundary. Geom. Topol., 9:219–246, 2005.

[BL03] Mario Bonk and Urs Lang. Bi-Lipschitz parameterization of surfaces. Math. Ann.,
327(1):135–169, 2003.

[BM17] Mario Bonk and Daniel Meyer. Expanding Thurston maps, volume 225 of Mathematical
Surveys and Monographs. American Mathematical Society, Providence, RI, 2017.



30 INTRODUCTION

[Che99] J. Cheeger. Differentiability of Lipschitz functions on metric measure spaces. Geom.
Funct. Anal., 9(3):428–517, 1999.

[Cou77] Richard Courant. Dirichlet’s principle, conformal mapping, and minimal surfaces.
Springer-Verlag, New York-Heidelberg, 1977. With an appendix by M. Schiffer,
Reprint of the 1950 original.

[CR22] Paul Creutz and Matthew Romney. The Branch Set of Minimal Disks in Metric
Spaces. International Mathematics Research Notices, 02 2022. rnac028.

[DS90] Guy David and Stephen Semmes. Strong A∞ weights, Sobolev inequalities and qua-
siconformal mappings. In Analysis and partial differential equations, volume 122 of
Lecture Notes in Pure and Appl. Math., pages 101–111. Dekker, New York, 1990.

[dSG10] Henri Paul de Saint-Gervais. Uniformisation des surfaces de Riemann. ENS Éditions,
Lyon, 2010. Retour sur un théorème centenaire. [A look back at a 100-year-old theo-
rem], The name of Henri Paul de Saint-Gervais covers a group composed of fifteen
mathematicians : Aurélien Alvarez, Christophe Bavard, François Béguin, Nicolas
Bergeron, Maxime Bourrigan, Bertrand Deroin, Sorin Dumitrescu, Charles Frances,
Étienne Ghys, Antonin Guilloux, Frank Loray, Patrick Popescu-Pampu, Pierre Py,
Bruno Sévennec, and Jean-Claude Sikorav.

[EP21] Sylvester Eriksson-Bique and Pietro Poggi-Corradini. On the Sharp Lower Bound
for Duality of Modulus. arXiv e-prints, page arXiv:2102.03035, February 2021.

[Fed69] Herbert Federer. Geometric measure theory. Die Grundlehren der mathematischen
Wissenschaften, Band 153. Springer-Verlag New York Inc., New York, 1969.

[FM22] Martin Fitzi and Damaris Meier. Canonical parametrizations of metric surfaces of
higher topology. arXiv e-prints, page arXiv:2201.03334, January 2022.

[Geh75] F. W. Gehring. Lower dimensional absolute continuity properties of quasiconformal
mappings. Math. Proc. Cambridge Philos. Soc., 78:81–93, 1975.

[Geh76] F. W. Gehring. Absolute continuity properties of quasiconformal mappings. In Sym-
posia Mathematica, Vol. LXVIII (Convegno sulle Transformazioni Quasiconformi e Ques-
tioni Connesse, INDAM,#Rome, 1974), pages 551–559. 1976.

[GW18] Lukas Geyer and Kevin Wildrick. Quantitative quasisymmetric uniformization of
compact surfaces. Proc. Amer. Math. Soc., 146(1):281–293, 2018.

[HaZ16] Piotr Hajł asz and Xiaodan Zhou. Sobolev embedding of a sphere containing an
arbitrary Cantor set in the image. Geom. Dedicata, 184:159–173, 2016.

[Hei01] Juha Heinonen. Lectures on analysis on metric spaces. Universitext. Springer-Verlag,
New York, 2001.

[HK11] Juha Heinonen and Stephen Keith. Flat forms, bi-Lipschitz parameterizations, and
smoothability of manifolds. Publ. Math. Inst. Hautes Études Sci., (113):1–37, 2011.

[HKM92] J. Heinonen, T. Kilpeläinen, and O. Martio. Harmonic morphisms in nonlinear
potential theory. Nagoya Math. J., 125:115–140, 1992.

[HM12] David Herron and Daniel Meyer. Quasicircles and bounded turning circles modulo
bi-Lipschitz maps. Rev. Mat. Iberoam., 28(3):603–630, 2012.

[HP09] Peter Haïssinsky and Kevin M. Pilgrim. Coarse expanding conformal dynamics.
Astérisque, (325):viii+139 pp. (2010), 2009.

[HS97] Juha Heinonen and Stephen Semmes. Thirty-three yes or no questions about map-
pings, measures, and metrics. Conform. Geom. Dyn., 1:1–12 (electronic), 1997.

[Hub06] John Hamal Hubbard. Teichmüller theory and applications to geometry, topology, and
dynamics. Vol. 1. Matrix Editions, Ithaca, NY, 2006. Teichmüller theory, With contri-
butions by Adrien Douady, William Dunbar, Roland Roeder, Sylvain Bonnot, David
Brown, Allen Hatcher, Chris Hruska and Sudeb Mitra, With forewords by William
Thurston and Clifford Earle.



INTRODUCTION 31

[Hub16] John Hamal Hubbard. Teichmüller theory and applications to geometry, topology, and
dynamics. Vol. 2. Matrix Editions, Ithaca, NY, 2016. Surface homeomorphisms and
rational functions.
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Uniformization of metric surfaces
using isothermal coordinates

Toni Ikonen

Abstract. We establish a uniformization result for metric surfaces—metric spaces that are
topological surfaces with locally finite Hausdorff 2-measure. Using the geometric definition of qua-
siconformality, we show that a metric surface that can be covered by quasiconformal images of
Euclidean domains is quasiconformally equivalent to a Riemannian surface. To prove this, we
construct an atlas of suitable isothermal coordinates.

Metristen pintojen uniformisaatio isotermisillä koordinaateilla

Tiivistelmä. Todistamme metristen pintojen uniformisaatiolauseen. Metrinen pinta on topo-
loginen pinta varustettuna etäisyysfunktiolla, jonka kaksiulotteinen Hausdorffin mitta on lokaalisti
äärellinen. Tutkimme milloin metrinen pinta on riemannilaisen pinnan geometrisesti kvasikonfor-
maalinen kuva. Osoitamme riittäväksi ehdoksi, että metrinen pinta voidaan peittää eukleideen
avaruuden alueiden kvasikonformaalisilla kuvilla. Konstruoimme todistusta varten kartaston isoter-
misiä koordinaatteja.

1. Introduction

1.1. Overview. The Riemann mapping theorem states that given a simply
connected proper subdomain U of R2, there exists a conformal map φ : D → U ,
where D is the Euclidean disk. Recall that conformal maps preserve angles but they
do not necessarily preserve lengths of paths or areas. We say that domains U and V
are conformally equivalent if there exists a conformal map from U to V .

When the topological type of U is more complicated, so is the classification result.
For example, if U = A(1, r) ⊂ R2 in an Euclidean annulus of inner radius 1 and outer
radius r > 1, two such annuli A(1, r) and A(1, r′) are conformally equivalent if and
only if r = r′.

If we relax the definition of conformal map to allow for distortion of infinitesimal
balls in a uniformly controlled manner, we obtain the class of quasiconformal maps.
With this relaxation, it turns out that for every pair of outer radii 1 < r and 1 < r′,
there exists a quasiconformal map from A(1, r) onto A(1, r′). Such a map takes the
infinitesimal Euclidean balls in A(1, r) to infinitesimal ellipses in A(1, r′), and the
distortion is determined from the eccentricity of the ellipses.

Similar questions can be considered when the topology type of the surface is more
complicated. This is the domain of Teichmüller theory of surfaces; see for example
[Leh87, IT92, Hub06]. Roughly speaking, the Teichmüller theory classifies Riemann
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surfaces up to conformal maps, and quasiconformal maps measure how far apart two
Riemann surfaces are from one another.

Quasiconformal maps also arise when we try to find isothermal coordinates in
a given Riemannian surface, that is, a smooth surface with a smooth Riemannian
metric. Indeed, given a Riemannian surface (Y, g) and a smooth chart f : V →
U ⊂ R2, by considering a smaller open set V ′ ⊂ V , we may assume without loss
of generality that f is quasiconformal. We interpret the Riemannian metric g on
V as a particular choice of an ellipse at each point of V . Then the chart f maps
these ellipses to ellipses in U . We ask whether it is possible to find a diffeomorphism
η : U →W ⊂ R2 such that the particular ellipses in U are mapped to Euclidean balls
by η. The existence of such a diffeomorphism η is guaranteed by the measurable
Riemann mapping theorem; see, for example, [AB60, AIM09]. When we apply this
theorem to the ellipse field of f , the composition η ◦ f maps the ellipses in V to
Euclidean balls. Classically, the coordinates η ◦ f are called isothermal coordinates.

We are interested in two questions. Given a metric space (Y, dY ) homeomorphic
to a surface, what conditions guarantee that there exists a Riemannian surface Z
and a quasiconformal map f : Y → Z? Moreover, is it possible to find a good notion
of isothermal coordinates on Y ?

We use an approach based on [Raj17]. Let Y be a metric surface and V ⊂ Y
homeomorphic to R2. We say that V is a reciprocal disk if there exists a quasicon-
formal homeomorphism f : V → U ⊂ R2. Given such an f , the inverse f−1 has
an approximate metric differential, which defines a field of convex bodies on U . We
obtain a field of ellipses on U by associating to each of the convex bodies its distance
ellipse (see for example [Rom19, Section 2], [TJ89, Chapter 37] or Section 4). As
before, there exists a quasiconformal homeomorphism η : U →W ⊂ R2 mapping the
field of distance ellipses to Euclidean balls. We call (V, η ◦ f) an isothermal chart of
Y . The reason we define the charts in this manner is that every isothermal chart is
(π/2)-quasiconformal; see [Rom19] or Section 4. We prove that whenever Y can be
covered by reciprocal disks, the isothermal charts form an atlas C on Y with tran-
sition maps holomorphic or antiholomorphic. Using the atlas C, we prove that Y is
quasiconformally equivalent to a Riemannian surface.

Given a metric surface, a cover by reciprocal disks can be found if the 2-dimensional
Hausdorff measure of any ball is bounded from above by a constant multiple of the
radius squared [Raj17, Theorem 1.6]. In fact, it suffices to require a (locally) uni-
form upper bound for the 2-dimensional Hausdorff upper density [RRR21, Propo-
sition 3.9]. Next, we give an example for which such a cover does not exist. To
this end, we consider a Cantor set E ⊂ R2 of positive Lebesgue measure and any
continuous function ω : R2 → [0,∞) with E = {x : ω(x) = 0}. We define a distance
dω by setting dω(x, y) = inf

´

γ
ω ds, the infimum taken over absolutely continuous

paths joining x to y. The metric space (R2, dω) is homeomorphic to the plane but no
Lebesgue density point of E can be covered by a reciprocal disk V ⊂ (R2, dω) [Raj17,
Example 2.1].

1.2. Main results. A metric space (Y, dY ) with a locally finite Hausdorff 2-
measure is a metric surface if it is homeomorphic to a connected 2-manifold without
boundary.

Definition 1.1. A metric surface (Y, dY ) is a quasiconformal surface if every
point of (Y, dY ) is contained in a quasiconformal image of an open set U ⊂ R2.
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A necessary and sufficient condition for Y to be a quasiconformal surface is given
by [Raj17, Theorem 1.4]. Note that every Riemannian surface is a quasiconformal
surface and being a quasiconformal surface is a quasiconformal invariant.

We now state the first of our main results.

Theorem 1.2. Every quasiconformal surface is quasiconformally equivalent to
a Riemannian surface.

To prove Theorem 1.2 for a given quasiconformal surface (Y, dY ), we construct
in Section 4 an atlas of isothermal charts for (Y, dY ). The atlas defines a conformal
structure C on (Y, dY ), uniquely determined from the distance dY . The classical
uniformization theorem implies the existence of a Riemannian norm field G on (Y, C)
of Gaussian curvature −1, 0, or 1 in such a way that the associated length distance
dG on Y is complete and that every element of C is an isothermal chart for the
Riemannian surface. The norm field G is not uniquely determined by C but different
choices of G are conformally equivalent. Having fixed such a G, the identity map from
(Y, dG) to (Y, dY ) is called the uniformization map and denoted by u. Theorem 1.2
follows from our next theorem.

Theorem 1.3. For every quasiconformal surface (Y, dY ), the uniformization map
u : (Y, dG) → (Y, dY ) is (π/2)-quasiconformal. More precisely, it satisfies

(1)
π

4
modΓ ≤ mod uΓ ≤ π

2
modΓ

for all path families Γ in (Y, dG).

In this generality, both the lower and upper bounds in (1) are best possible for any
quasiconformal map from a Riemannian surface onto (Y, dY ) [Raj17, Example 2.2].

As a particular application of Theorem 1.3, we consider a quasiconformal surface
(Y, dY ) homeomorphic to a domain in the sphere S2. Using the notation from The-
orem 1.3, we recall the existence of a 1-quasiconformal embedding ψ : (Y, dG) → S2

[AS60, Section III.4]. Then the composition f = ψ◦u−1 is a (π/2)-quasiconformal em-
bedding of (Y, dY ) into the sphere S2, satisfying the bounds (2/π)modΓ ≤ mod fΓ ≤
(4/π)modΓ for all path families in (Y, dY ). Romney proved in [Rom19] the existence
of such an embedding for reciprocal disks.

Next, we refer the reader to Section 6.2 for the definitions of Ahlfors 2-regularity,
linear local contractibility, and quasisymmetries.

Theorem 1.4. If (Y, dY ) is a compact, linearly locally contractible, and Ahlfors
2-regular metric surface, then (Y, dY ) is a quasiconformal surface. Furthermore, a
uniformization map u : (Y, dG) → (Y, dY ) is η-quasisymmetric with η depending only
on the data of (Y, dY ).

In the statement, the data of (Y, dY ) refers to the constants appearing in the
definitions of linear local contractibility and Ahlfors 2-regularity. When (Y, dY ) is
homeomorphic to S2, we need to choose the uniformization map with care.

The main theorem from [BK02] proves that if (Y, dY ) is as in the statement
of Theorem 1.4 and homeomorphic to S2, then there exists an η′-quasisymmetry
ψ : S2 → (Y, dY ). We recover this result from Theorem 1.4, since (Y, dG) is isometric
to S2.

Theorem 1.2 of [GW18] proves that if (Y, dY ) is as in the statement of The-
orem 1.4, orientable and not homeomorphic to S2, there exists a complete Rie-
mannian surface Z of constant curvature and an η′-quasisymmetric homeomorphism
φ : Z → (Y, dY ) with η′ depending only on the data of (Y, dY ). Using Theorem 1.3,
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our isothermal coordinates, and a modified version of their proof, we prove that
the uniformization map is η-quasisymmetric with η depending only on the data of
(Y, dY ). The modified proof also works for the non-orientable case.

We refer the interested reader to [BK02, Raj17, GW18], and references therein,
for further reading about the quasisymmetric uniformization problem.

2. Outline of the paper

In Section 3, we introduce our notations and recall some prerequisite knowledge.
In Section 4, we prove the existence of isothermal charts and the uniformization
mapping. In Section 5, we analyze quasiconformal homeomorphisms between qua-
siconformal surfaces. These results are applied in Section 6, where we introduce
isothermal parametrizations of quasiconformal surfaces by Riemannian surfaces. We
prove that up to a conformal diffeomorphism, the isothermal parametrizations are
uniquely determined by the uniformization mapping. We also prove Theorem 1.4 in
this section. In Section 7, we have some concluding remarks.
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3. Preliminaries

Let (Y, dY ) be a metric space. We drop the subscript from dY when convenient.
We recall the definition of Hausdorff measure. For all Q ≥ 0, the Q-dimensional
Hausdorff measure is defined by

HQ
Y (B) =

α(Q)

2Q
sup
δ>0

inf

{ ∞∑

i=1

(diamBi)
Q : B ⊂

∞⋃

i=1

Bi, diamBi < δ

}

for all sets B ⊂ Y , where the normalization constant is chosen in such a way that
Hn

Rn coincides with the Lebesgue measure Ln for all positive integers n.
A path is a continuous function from a compact interval into a metric space. A

path in Y will typically be denoted by γ. The length of the path γ : [a, b] → Y is
defined as

ℓd(γ) = sup
n∑

j=1

d(γ(ti−1), γ(ti)),

where the supremum is taken over all finite sequences a = t0 ≤ t1 ≤ · · · ≤ tn = b. A
path is rectifiable if it has finite length.

The metric speed of a path γ : [a, b] → Y at the point t ∈ [a, b] is defined as

vγ(t) = lim
t6=s→t

d(γ(s), γ(t))

|t− s|
whenever this limit exists. If γ is rectifiable, its metric speed exists at L1-almost
every t ∈ [a, b] [Dud07, Theorem 2.1].

A rectifiable path γ : [a, b] → Y is absolutely continuous if for all a ≤ s ≤ t ≤ b,

d(γ(t), γ(s)) ≤
ˆ t

s

vγ(u) dL1(u)
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with vγ ∈ L1([a, b]) where L1 is the Lebesgue measure on the real line. Equivalently,
γ is absolutely continuous if it maps sets of L1-measure zero to sets of H1

Y -measure
zero in its image [Dud07, Section 3]. We refer to Chapter 5 of [HKST15] for further
details about rectifiable paths.

If γ : [a, b] → Y is rectifiable, then there exist a 1-Lipschitz path γ̃ : [0, ℓ(γ)] → Y
whose metric speed equals one L1-almost everywhere on [0, ℓ(γ)], and for which there
exists a non-decreasing surjective map ψ : [a, b] → [0, ℓ(γ)] with γ̃ ◦ ψ = γ.

Let ρ : Y → [0,∞] be a Borel function. The (path) integral of ρ over γ is defined
by

(2)
ˆ

γ

ρ ds =

ˆ ℓ(γ)

0

ρ ◦ γ̃ dL1.

A Borel function ρ is integrable over γ if (2) is finite. If γ is an absolutely continuous
path, then

ˆ

γ

ρ ds =

ˆ b

a

(ρ ◦ γ) vγ dL1;

see [Dud07]. A path is non-constant if ℓ(γ) > 0.
Let Γ be a family of paths in Y . A Borel function ρ : Y → [0,∞] is admissible

for Γ if for every rectifiable path in Γ,

(3)
ˆ

γ

ρ ds ≥ 1.

The (conformal) modulus of Γ is

(4) modΓ = inf

ˆ

Y

ρ2 dH2
Y ,

where the infimum is taken over all admissible functions ρ. A Borel function ρ : Y →
[0,∞] is weakly admissible for Γ if there exists a path family Γ′ ⊂ Γ such that
modΓ′ = 0 and for every γ ∈ Γ \ Γ′ (3) holds. We refer to [HKST15, Section 5.2]
and [Wil12, Lemma 2.2] for basic properties of modulus. We recall that Γ 7→ modΓ
is an outer measure on the collection of path families.

We say that a path family Γ is negligible if modΓ = 0. A property holds for almost
every path if the path family along which it fails is negligible. We recall that a family
Γ of non-constant paths is negligible if and only if there exists ρ ∈ L2(Y ) such that
the integral of ρ over every rectifiable γ ∈ Γ is infinite [HKST15, Lemma 5.2.8]. The
equivalence also holds for ρ ∈ L2

loc(Y ) by the countably subadditivity of modulus.
Let φ : (Y, dY ) → (Z, dZ) be a homeomorphism between metric surfaces. The map

φ is an element of the Sobolev space N1,2
loc (Y, Z) if there exists a non-negative Borel

function ρ ∈ L2
loc(Y ) such that for all non-constant rectifiable paths γ : [a, b] → Y ,

(5) dZ(φ(γ(a)), φ(γ(b))) ≤
ˆ

γ

ρ ds.

Such a function ρ is called an upper gradient of φ. A Borel function is a weak upper
gradient of φ if (5) holds for almost all non-constant paths. A weak upper gradient
ρ of φ ∈ N1,2

loc (Y, Z) is minimal if for every other weak upper gradient ρ̃ ∈ L2
loc(Y ),

ρ ≤ ρ̃ H2
Y -almost everywhere. Every φ ∈ N1,2

loc (Y, Z) has a minimal weak upper
gradient, uniquely defined H2

Y -almost everywhere, which we denote by ρφ. We refer
the reader to [HKST15] and [Wil12] for details.
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Let C ⊂ Y be a Borel set. The length of γ in C, denoted by ℓ(γ ∩ C), is the
integral of χC over γ. Then Γ+

C denotes those rectifiable paths that have positive
length in C.

Observe that if H2
Y (C) = 0, then Γ+

C is negligible; consider the admissible function
∞ · χC . We prove in Lemma 3.2 a partial converse of this fact. We use the converse
later on, since quasiconformal surfaces can have Borel subsets C ⊂ Y of positive
measure for which modΓ+

C = 0. See Remark 3.4 for further discussion.

Definition 3.1. For a metric surface (Y, dY ) and for each Borel set C ⊂ Y , we
denote νY (C) =

´

C
ρidY dH2

Y .

Lemma 3.2. Let (Y, dY ) be a metric surface. Then there exists a Borel set
C0 ⊂ Y such that ρidY = χY \C0

. Moreover, for each Borel set C ⊂ Y , modΓ+
C = 0 if

and only if νY (C) = 0.

Proof. Fix a Borel representative ρ of the minimal weak upper gradient ρidY .
Since ρ and χY are weak upper gradients of idY , so is their pointwise minimum.
Therefore, we may assume without loss of generality that ρ ≤ χY everywhere.

For A = {ρ < 1}, we have that modΓ+
A = 0, since otherwise ρ cannot be a weak

upper gradient of idY [HKST15, Proposition 6.3.3]. Therefore, ρ0 = ρχY \A = χY \A is
a weak upper gradient of idY , and ρ0 ≤ ρ implies that ρ0 is a representative of ρidY .
We denote C0 := A.

Consider ρ0 = χY \C0 as above. If C ⊂ Y is a Borel set with modΓ+
C = 0,

then ρ0χY \C is a representative of ρidY , so 0 = H2
Y (C \ C0) = νY (C). Conversely, if

0 = νY (C) = H2
Y (C \ C0), then modΓ+

C\C0
= 0. Also, modΓ+

C∩C0
≤ modΓ+

C0
= 0.

These facts imply that modΓ+
C = 0. The set C0 has the claimed properties. �

Consider a homeomorphism φ : (Y, dY ) → (Z, dZ) between metric surfaces. We
denote φ∗H2

Z(A) = H2
Z(φ(A)) for all sets A ⊂ Y . Then there exists a decomposition

φ∗H2
Z = JφH2

Y + µ⊥ with H2
Y and µ⊥ singular [Bog07, Sections 3.1–3.2, Volume I].

We refer to the density Jφ as the Jacobian of φ.
We say that φ satisfies Lusin’s Condition (N) if φ∗H2

Z is absolutely continuous
with respect to H2

Y . It satisfies Lusin’s Condition (N−1) if H2
Y is absolutely contin-

uous with respect to φ∗H2
Z .

A homeomorphism φ : (Y, dY ) → (Z, dZ) between metric surfaces is quasiconfor-
mal if there exist constants KO, KI ≥ 1 such that K−1

O modΓ ≤ modφΓ ≤ KI modΓ
for every path family Γ in (Y, dY ). Recalling [Wil12, Theorem 1.1], an equivalent
definition is obtained by requiring

φ ∈ N1,2
loc (Y, Z) and ρ2φ ≤ KOJφ H2

Y -a.e. and(6)

φ−1 ∈ N1,2
loc (Z, Y ) and ρ2φ−1 ≤ KIJφ−1 H2

Z-a.e.(7)

with the same constants KO and KI . The smallest constant KO (resp. KI) for
which (6) (resp. (7)) holds is called the outer dilatation of φ (resp. inner dilatation)
and denoted by KO(φ) (resp. KI(φ)). We say that a quasiconformal mapping is K-
quasiconformal if KO(φ) ≤ K and KI(φ) ≤ K. The smallest K ≥ 1 for which φ is
K-quasiconformal is called the maximal dilatation of φ.

Having defined quasiconformal mappings, we prove the following.

Lemma 3.3. Let φ : (Y, dY ) → (Z, dZ) be a quasiconformal homeomorphism be-
tween metric surfaces. Then for each Borel sets C ⊂ Y , the following four conditions
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are equivalent:

νY (C) = 0, modΓ+
C = 0, modΓ+

φ(C) = 0 and νZ(φ(C)) = 0.

Proof. Let K denote the maximal dilatation of φ. Fix Borel representatives of
ρφ and ρφ−1 ◦ φ. We denote ρ = ρφ (ρφ−1 ◦ φ). We recall from (6) and (7) that

(8) ρ2φ ≤ KJφ ∈ L1
loc(Y ) and ρ2φ−1 ≤ KJφ−1 ∈ L1

loc(Z)

hold H2
Y - and H2

Z-almost everywhere, respectively.
Proposition 6.3.3 of [HKST15] implies that for almost every non-constant abso-

lutely continuous path γ : [0, 1] → Y , the path φ ◦ γ is absolutely continuous and for
L1-almost every 0 ≤ t ≤ 1,

(9) vφ◦γ(t) ≤ (ρφ ◦ γ(t)) vγ(t) ∈ L1([0, 1]).

The right-hand side is interpreted to be zero in the set {vγ ≡ 0}. Let Γ1 denote the
collection of those non-constant paths for which (9) fails.

As above, for almost every non-constant absolutely continuous path θ : [0, 1] →
V , the path φ−1 ◦ θ is absolutely continuous and for L1-almost every 0 ≤ t ≤ 1,

(10) vφ−1◦θ(t) ≤ (ρφ−1 ◦ θ(t)) vθ(t) ∈ L1([0, 1]).

Let Γ2 denote the collection of those paths γ in Y for which θ = φ ◦ γ fails (10).
Since φ is quasiconformal, mod(Γ1 ∪ Γ2) = 0. Therefore, for almost every ab-

solutely continuous γ : [0, 1] → Y and θ = φ ◦ γ both (9) and (10) hold L1-almost
everywhere. For such γ,

vγ(t) ≤ (ρ ◦ γ(t)) vγ(t)
for L1-almost every 0 ≤ t ≤ 1. This implies that ρ is a weak upper gradient of the
identity map idY : Y → Y , and we conclude from (8) that

(11) ρ ∈ L2
loc(Y ).

Similar reasoning as above yields that

(12) ρ ◦ φ−1 ∈ L2
loc(Z)

is a weak upper gradient of idZ .
Let Γ3 denote the collection of those absolutely continuous paths in U along

which ρ fails to be integrable or those γ for which ρ ◦φ−1 fails to be integrable along
φ ◦ γ. Then (11) and (12) imply that modΓ3 = 0 as well.

Consider Γ0 = Γ1∪Γ2∪Γ3. Observe that given a Borel set C ⊂ U , an absolutely
continuous path γ : [0, 1] → U 6∈ Γ0 has positive length in C, i.e.,

ˆ 1

0

(χC ◦ γ) vγ dL1 > 0

if and only if the absolutely continuous path φ ◦ γ has positive length in φ(C). Since
Γ0 and φΓ0 are negligible, we deduce from this that modΓ+

C = 0 if and only if
modΓ+

φ(C) = 0. Then Lemma 3.2 proves the claim. �

Remark 3.4. As a consequence of Lemma 3.2, a quasiconformal homeomor-
phism φ from (Y, dY ) into (Z, dZ) satisfies Lusin’s Conditions (N) and (N−1) with
respect to the measures νY and νZ . That is, for all Borel subsets B ⊂ Y , νY (B) = 0
if and only if νZ(φ(B)) = 0. We use this fact in Section 5.

As an application of Lemma 3.2, we fix a Borel set B0 ⊂ Y such that νY =
χY \B0H2

Y and νZ = χZ\φ(B0)H2
Z . The product ρφ(ρφ−1 ◦ φ) is uniquely defined νY -

almost everywhere, since every representative of ρφ is zero H2
Y -almost everywhere
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in B0 and ρφ−1 zero H2
Z-almost everywhere in φ(B0). We apply this fact already in

Section 4.
If Z is an open subset of R2 or a Riemannian surface, we have νZ ≡ H2

Z in
Lemma 3.3. Therefore, for such Z, any quasiconformal mapping φ as above satisfies
Lusin’s Condition (N). For such a Z, if we have ρidY = χY \B0

with H2
Y (B0) > 0,

φ fails Lusin’s Condition (N−1), with respect to the Hausdorff 2-measures, exactly
at Borel subsets of B0 of positive measure. We note that there are quasiconformal
surfaces for which H2

Y (B0) > 0; see [Raj17, Proposition 17.1]. Due to this fact, many
results in Section 5 are only phrased in terms of νY .

We sometimes write TU = U ×R2 when U ⊂ R2 is an open set. We refer to TU
as the tangent bundle of U . For each x ∈ U , we refer to {x} × R2 as a fiber of TU
and denote it by TxU .

At times, we consider quasiconformal maps ψ : U → Ũ between open subsets of
R2. Such maps have a differential Dψ L2-almost everywhere, which just means its
classical derivative. The differential defines a map

Dψ : TU → T Ũ,

where the fiber TxU is taken to Tψ(x)Ũ by the linear map Dxψ.
Next, we consider a measurable seminorm field N : TU → [0,∞]. This means

that we have a measurable map from TU into [0,∞] such that for L2-almost every
x ∈ U , the restriction of N to TxU is a seminorm. If the restriction of N to L2-almost
every fiber is a norm, we say that N is a norm field. In this case, the pair (TU,N) is
called a normed bundle, where the fibers refer to (TU,N)x := (TxU,N |TxU).

We sometimes consider the differential Dψ between two normed bundles, i.e., the
map

(13) Dψ : (TU,N) → (T Ũ, Ñ).

The operator norm ‖Dψ‖ of (13) at x ∈ U refers to the operator norm of the
linear map Dxψ : (TU,N)x → (TU,N)ψ(x). We denote the Jacobian of Dψ at x by
J2(Dψ)(x). The outer dilatation KO(Dψ) at x ∈ U is defined as

(14) KO(Dψ)(x) =
‖Dψ‖2 (x)
J2(Dψ)(x)

.

The inner dilatation KI(Dψ) at x ∈ U is defined by the formula

(15) KI(Dψ)(x) = KO(D(ψ−1))(ψ(x)).

The maximal dilatation K(Dψ) of Dψ at x ∈ U is the maximum of (14) and (15).
The objects (13), (14) and (15) are well-defined even if we consider norms {Nx}x∈U

and
{
Ñx

}
x∈U together with linear maps Lx : (TU,N)|x → (TU, Ñ)|x. The objects

above are defined similarly when U is an open subset of a smooth surface.

4. Proof of Theorem 1.3

We define isothermal parametrizations in Section 4.1 and state some of their
properties. In Section 4.2, we analyze general quasiconformal maps from planar
domains into metric surfaces. Using results from that subsection, we prove the claims
from Section 4.1 in Section 4.3.

We construct the atlas of isothermal coordinates for (Y, dY ) in Section 4.4. We
define the uniformization map in Section 4.5 and prove Theorem 1.3 there.
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4.1. Isothermal parametrizations.

Definition 4.1. A quasiconformal homeomorphism φ : U → V ⊂ Y , with U ⊂
R2 open, is an isothermal parametrization of V if for every other quasiconformal
homeomorphism φ̃ : Ũ → V with Ũ ⊂ R2,

(16) ρφ(x) (ρφ−1 ◦ φ(x)) ≤ ρφ̃(x̃)
(
ρφ̃−1 ◦ φ̃(x̃)

)

for x̃ = (φ̃−1 ◦ φ)(x) and L2-almost every x ∈ U . If the image of φ is clear, we say
that φ is isothermal.

Here ρφ denotes a minimal weak upper gradient of φ and ρφ−1 a minimal weak
upper gradient of φ−1. Lemma 3.3 implies that both sides of (16) are independent
of the representatives we use.

It turns out that the left-hand side of (16) is the geometric mean of the pointwise
versions of the dilatations KO(φ) and KI(φ); this is made precise in (19) and the
discussion following (19). This observation implies that isothermal parametrizations
minimize the geometric mean of the pointwise dilatations; see Theorem 4.12 for the
precise statement. We highlight two consequences of Theorem 4.12.

Proposition 4.2. Let φ : U → V be K-quasiconformal, U ⊂ R2 and V ⊂ Y

open. Then there exist a set Ũ ⊂ R2 and a (4K/π)-quasiconformal homeomorphism
ψ : Ũ → U such that φ̃ = φ ◦ ψ is isothermal.

Proposition 4.3. Every isothermal parametrization φ : U → V satisfies

(17)
π

4
modΓ ≤ modφΓ ≤ π

2
modΓ

for all path families Γ ⊂ U . Moreover, if V ′ ⊂ V is open and φ′ : U ′ → V ′ is
quasiconformal with U ′ ⊂ R2, φ′ is an isothermal parametrization of V ′ if and only
if φ−1 ◦ φ′ is holomorphic or antiholomorphic.

We see from Proposition 4.3 that isothermal parametrizations satisfy the same di-
latation bounds as the parametrizations constructed in [Rom19]. In fact, our isother-
mal parametrizations coincide with the parametrizations considered by Romney for
simply connected domains. This observation is not immediately apparent from our
definition, but is a corollary of Theorem 4.12.

4.2. Quasiconformal parametrizations. Before proving the existence of
isothermal parametrizations, we first analyze a given quasiconformal map φ : U →
V ⊂ Y with open U ⊂ R2 and Y a metric surface. Since φ ∈ N1,2

loc (U, V ), there exists
a measurable seminorm field

Nφ : TU → R
that encodes the following geometric properties of φ.

Lemma 4.4. The following properties hold.
(a) The maximal stretching of Nφ,

L(Nφ)(x) := sup
‖v‖2≤1

Nφ(x, v) for x ∈ U,

defines a representative of the minimal weak upper gradient ρφ;
(b) The Jacobian function

x 7→ J2(Nφ)(x) :=
π

L2 ({v ∈ R2 : Nφ(x, v) ≤ 1})
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is a representative of the Jacobian Jφ of φ;
(c) For almost every non-constant absolutely continuous path γ : [a, b] → U ,

vφ◦γ(t) = Nφ ◦Dγ(t)
for L1-almost every t, where Dγ(t) = (γ(t), γ′(t)) is the derivative of γ at t.

See [LW18, Sections 3.3-3.4 and 3.6] for the proof of Lemma 4.4. The seminorm
field Nφ is refered to as the approximate metric differential of φ. Lemma 3.3 implies
that φ satisfies Lusin’s Condition (N−1) (see also Remark 3.4). Then the Sobolev
regularity of φ implies the following; see, for example, [Raj17, Lemma 14.1].

Lemma 4.5. The homeomorphism φ satisfies Lusin’s Condition (N−1) and there
exists a Borel set B0 ⊂ U with L2(B0) = 0 such that φ|U\B0

satisfies Lusin’s Condition
(N).

Lemma 4.5 implies the following.

Corollary 4.6. If B0 is as in Lemma 4.5, then the Jacobian of φ−1 equals 1/(Jφ◦
φ−1) H2

Y -almost everywhere in V \ φ(B0).

Rajala’s example [Raj17, Proposition 17.1] illustrates that the set φ(B0) can have
positive H2

Y -measure, so φ does not necessarily satisfy Lusin’s Condition (N).
Since φ satisfies Lusin’s Condition (N−1), the Jacobian of φ is non-zero L2-almost

everywhere in U . In other words, the approximate metric differential Nφ is a norm L2-
almost everywhere in U . Consequently, ω(Nφ)(x) := inf‖v‖2≥1Nφ(x, v) is an element
in (0,∞) for L2-almost every x ∈ U .

Lemma 4.7. Let B0 be as in Lemma 4.5 and

ρ̃(y) =

(
1

ω(Nφ)
◦ φ−1(y)

)
χV \φ(B0)(y) for each y ∈ V .

Here ρ̃ ≡ 0 in φ(B0). Then ρ̃ is a representative of the minimal upper gradient ρφ−1 .

Proof. The L2
loc-integrability of ρ̃ follows from the change of variables formula

for φ. Lemma 4.5 and Lemma 3.3 imply that modΓ+
φ(B0)

= 0.
We conclude that almost every non-constant path has zero length in φ(B0) and

that ρ̃ is integrable over the path. We may also assume that the image path γ in U
is absolutely continuous and satisfies Lemma 4.4 (c). These facts imply that ρ̃ is a
weak upper gradient of φ−1.

To see that ρ̃ is a minimal upper gradient, it suffices to fix a upper gradient ρ ∈
L2
loc(Y ) of φ−1 and to prove ρ̃ ≤ ρ H2

Y -almost everywhere. This is clear everywhere
in φ(B0). Since φ|U\B0 satisfies Lusin’s Condition (N) and (N−1), it suffices to verify
ρ̃(y0) ≤ ρ(y0) for y0 = φ(x0) for L2-almost every x0 ∈ U \ B0. We fix v0, w0 ∈ S1

perpendicular to one another.
Consider now a rectangle R ⊂ U with a foliation γt(s) = x0 + tv + sw, for

−1 ≤ s, t ≤ 1, r = ‖v‖2 = ‖w‖2 with v = rv0 and w = rw0. For L1-almost every t,
Lemma 4.4 (c) holds for γt, and θt := φ ◦ γt is absolutely continuous. Then the upper
gradient inequality and Fubini’s theorem imply

ρ(φ(x)) Nφ((x, w)) ≥ ‖w‖2 for L2-almost every x ∈ R \B0.

Covering U by such rectangles implies

(18) ρ(φ(x)) ≥ 1

Nφ((x, w0))
for L2-almost every x ∈ U \B0.
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Since the inequality (18) holds for a countable dense set {wi}∞i=1 ⊂ S1 for L2-almost
every x0 ∈ U \B0, taking the supremum over i yields ρ(φ(x)) ≥ ρ̃(φ(x)) for L2-almost
every x ∈ U \B0. This was sufficient for the claim. �

Definition 4.8. Let φ : U → V be quasiconformal. The pointwise outer dilata-
tion of φ at x ∈ U is

KO(φ)(x) =
ρ2φ(x)

Jφ(x)

and the pointwise inner dilatation of φ at x ∈ U is

KI(φ)(x) =
(
ρ2φ−1(φ(x))

)
Jφ(x)χU\B0(x).

The pointwise maximum dilatation of φ at x ∈ U is the maximum of the correspond-
ing outer and inner dilatations.

We consider the differential

(19) Did : (TU, ‖·‖2) → (TU,Nφ)

as defined in (13). Then Lemma 4.4 (a) implies that the operator norm of Did from
(19) is a representative of ρφ. Similarly, Lemma 4.4 (b) implies that the Jacobian
J2(Did) is a representative of the Jacobian of φ. Lemma 4.7 and Corollary 4.6 yield
similar identities for the inverse of the map in (19). Consequently, the pointwise outer
(resp. inner) dilatation of φ and the differential in (19) coincide. These facts imply
that the left-hand side of (16) equals

√
KO(Did)KI(Did) L2-almost everywhere.

Therefore, the left-hand side in (16) is the geometric mean of the outer and inner
dilatations of the differential (19). This fact connects the definition of isothermal
parametrizations to convex analysis.

4.3. Banach–Mazur distance and isothermal parametrizations. In this
section, we associate a Beltrami differential to the approximate metric differential of
any given quasiconformal parametrization. For this purpose, we introduce Banach–
Mazur distance from convex analysis.

Definition 4.9. LetM andN be norms on R2. Then GL2[M,N ] is the collection
of all invertible linear maps S : (R2,M) → (R2, N). An invertible linear map S ∈
GL2[M,N ] is a Banach–Mazur minimizer from M to N if S attains the infimum

ρ(M,N) = inf
T∈GL[M,N ]

√
KO(T )KI(T ).

If the domain and codomain of the linear map S are clear from the context, we say
that S is a Banach–Mazur minimizer. The number ρ(M,N) is the Banach–Mazur
distance from M to N .

If N is induced by an inner product, ρ(M,N) ≤
√
2 [TJ89, Proposition 9.12],

with ρ(M,N) =
√
2 if M is the supremum norm [TJ89, Proposition 37.6]. Therefore,

ρ(M,N) ≤ 2 for every pair of norms. Then a compactness argument implies that
Banach–Mazur minimizers exist for each pair of norms, see e.g. [TJ89, Section 37].

We recall some notations. The group O2 is the group of linear isometries of R2

and R+ · O2 denotes the group of invertible linear maps L = λ · S, where λ > 0 and
S ∈ O2. The group SO2 consists of the elements of O2 with determinant equal to 1.
The group R+ ·O2 are the linear conformal automorphisms of R2, and R+ · SO2 the
subgroup of R+ · O2 whose elements have positive determinant.
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Lemma 4.10. Let M be a norm on R2 and L : (R2,M) → (R2, ‖·‖2) a Banach–
Mazur minimizer. Then

π

4
ρ2(M, ‖·‖2) ≤ KO (L) ≤ π

2
and(20)

2

π
ρ2(M, ‖·‖2) ≤ KI (L) ≤

4

π
.(21)

Moreover, L′ ∈ GL2[M, ‖·‖2] is a Banach–Mazur minimizer if and only if L′ ◦ L−1 ∈
R+ · O2.

Proof. The inequalities (20) and (21) are slight reformulations of Lemma 2.1 of
[Rom19]. Lemma 2.2 of [Rom19] proves that if L′ is a Banach–Mazur minimizer, then
L′◦L−1 ∈ R+ ·O2. Conversely, if L′ = S ◦L for some S ∈ R+ ·O2, the outer and inner
dilatations of L′ and L coincide. Therefore, L′ is a Banach–Mazur minimizer. �

If M is the supremum norm, we have that ρ2(M, ‖·‖2) = 2. Thus (20) and (21)
are equalities in this case. In fact, KO (L) = π/2 and KI (L) = 4/π for a Banach–
Mazur minimizer from M to ‖·‖2 if and only if M is isometric to the supremum norm
[TJ89, Proposition 37.4].

We identify R2 with the complex plane in the following statement.

Corollary 4.11. Suppose that M is a norm on R2. Then there exists a unique
complex number µM in the Euclidean ball D such that

TM = id + µM · id :
(
R2,M

)
→

(
R2, ‖·‖2

)

is a Banach–Mazur minimizer from M to ‖·‖2. Moreover, µM and TM depend con-
tinuously on the norm M .

Here µM ·id refers to the complex multiplication and id(w) = w1 + iw2 = w1−iw2

denotes the complex conjugation map.

Proof. Consider an orientation-preserving Banach–Mazur minimizer L : (R2,M)
→ (R2, ‖·‖2), the existence of which follows from Lemma 4.10.

Fix an orientation-preserving L′ ∈ GL2[M, ‖·‖2]. Lemma 4.10 implies that L′

is a Banach–Mazur minimizer if and only if L′ = S ◦ L for some S ∈ R+ · SO2.
Such an S exists if and only if L′ and L have the same Beltrami differential [AIM09,
Section 2.4]. Moreover, for a given L, there exists S ∈ R+ · SO2 such that L = S ◦ T
for some T = id + µ · id with µ ∈ D. So T = TM and µ = µM are uniquely defined.

Next, we establish the continuity of M 7→ µM and M 7→ TM . To this end, given
a sequence of norms (Mj)

∞
j=1 and a norm M , with Mj → M uniformly in compact

subsets of R2, we claim that TMj
→ TM . First, we note that Banach–Mazur distances

ρ(Mj , ‖·‖2) converge to ρ(M, ‖·‖2). Indeed, for every ǫ > 0, there exists j0 such that
for every j ≥ j0, the identity mapping from (R2,Mj) to (R2,M) is (1+ǫ)-bi-Lipschitz.
This implies the claimed convergence. This convergence implies that (TMj

)∞j=1 is a
normal family.

Consider a convergent subsequence with TMji
→ T . Then the sequence of outer

(resp. inner) dilatations of TMji
: (R2,Mji) → (R2, ‖·‖2) converge to the outer (resp.

inner) dilatation of T : (R2,M) → (R2, ‖·‖2). Therefore,

ρ(M, ‖·‖2) ≤
√
KO(T )KI(T ) = lim

i→∞

√
KO(Tji)KI(Tji) = lim

i→∞
ρ(Mji , ‖·‖2).

The right-hand side equals ρ(M, ‖·‖2), so T must be a Banach–Mazur minimizer.
Since every accumulation point of (TMj

)∞j=1 is of the form T = id+µ · id, we conclude
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that T = TM by the uniqueness of TM . This implies µ = µM . Since (TMj
)∞j=1 has

a unique accumulation point, the sequence itself converges to TM . This also implies
µMj

→ µM . �
Let M and TM be as in Corollary 4.11. We call the ellipse

EM :=
{
v ∈ R2 :

∥∥T−1
M

∥∥ ‖TM(v)‖2 ≤ 1
}

the distance ellipse of {M ≤ 1}. We note that for every ellipse E ⊂ {M ≤ 1} and
every λ > 0 with {M ≤ 1} ⊂ λE , we have λ ≥ ρ(M, ‖·‖2). The equality λ =
ρ(M, ‖·‖2) holds if and only if E is the distance ellipse. Observe that EM is an
Euclidean ball if and only if µM = 0.

In the following statement, φ : U → V ⊂ Y is a quasiconformal homeomorphism
with U ⊂ R2 open. Furthermore, we denote µφ := µNφ

for the approximate metric
differential Nφ. We refer to µφ as the Beltrami differential of φ.

Theorem 4.12. Let W ⊂ R2 be open and ψ : W → U be a quasiconformal map,
possibly orientation-reversing. Then the following are equivalent:

(a) The composition φ ◦ ψ is isothermal;
(b) The equality µφ◦ψ = 0 holds L2-almost everywhere.

If either one of the conditions hold and φ is K-quasiconformal, then ψ is (4K/π)-
quasiconformal. Moreover, the above conditions are equivalent to any one of the
following.

(c) Either ψ−1 or ψ−1 is an orientation-preserving solution of the Beltrami equa-
tion ∂zf = µφ∂zf ;

(d) The map DidW : (TW,Nφ◦ψ) → (TW, ‖·‖2) is a Banach–Mazur minimizer
pointwise L2-almost everywhere;

(e) The pointwise dilatations satisfy the equality

KO(φ ◦ ψ)KI(φ ◦ ψ) = ρ2(‖·‖2 ,Nφ◦ψ)

L2-almost everywhere in W .

We discussed normed bundles (TU,Nφ) in Section 3. We refer the reader to
[AIM09, Chapter 5] for the basics of Beltrami equations and the measurable Riemann
mapping theorem.

Proof of Theorem 4.12. Lemma 4.10 yields that

D(ψ−1) : (TU,Nφ) → (TW, ‖·‖2)
is a Banach–Mazur minimizer L2-almost everywhere if and only if there exists a mea-
surable map x 7→ S(x) ∈ R+ · O2 such that D(ψ−1) = S ◦ TNφ

pointwise L2-almost
everywhere. The map ψ is orientation-preserving if and only if S is orientation-
preserving L2-almost everywhere. In that case µψ−1 = µφ holds L2-almost every-
where. Otherwise, ψ−1 is orientation-preserving and µψ−1 = µφ holds L2-almost
everywhere. These facts and the chain rule Nφ◦ψ = Nφ ◦Dψ now imply that Proper-
ties (c) and (d) are equivalent.

We recall from (19) and the following discussion that the pointwise dilatations
satisfy KO(φ ◦ ψ) = KO(DidW ) and KI(φ ◦ ψ) = KI(DidW ) L2-almost everywhere.
Therefore, the dilatations also satisfy

KO(φ ◦ ψ)KI(φ ◦ ψ) ≥ ρ2(‖·‖2 ,Nφ◦ψ) L2-almost everywhere.(22)

Moreover, the equality (22) holds L2-almost everywhere if and only if Property (d)
holds.
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Also, if ψ1 and ψ2 are two maps for which φ ◦ ψ1 and φ ◦ ψ2 are isothermal
parametrizations, the pointwise dilatations satisfy

KO(φ ◦ ψ1)KI(φ ◦ ψ1) = [KO(φ ◦ ψ2)KI(φ ◦ ψ2)] ◦ (ψ−1
2 ◦ ψ1)(23)

L2-almost everywhere.
By applying (22) and (23), the equivalence of Properties (c) to (e) and Property

(a) follows if it can be shown that there exists a quasiconformal map ψ such that the
equality in (22) holds L2-almost everywhere. By Property (c), it suffices to solve the
Beltrami equation µf = µφ induced by φ.

Suppose that we know that the L∞-norm of µφ is bounded from above by some
constant C < 1. Then we extend µφ as zero to the Euclidean plane and let f be the
normalized solution to the corresponding Beltrami equation. The existence of f is
guaranteed by the measurable Riemann mapping theorem; see for example [AIM09].
The restriction of f−1 to the appropriate open set is the desired map ψ.

Lemma 4.10 implies that

‖µφ‖L∞(U) ≤
4
π
K − 1

4
π
K + 1

=: C,

where we use the fact that φ is K-quasiconformal. This inequality also implies that
the maximal dilatation of ψ is bounded from above by (4K/π).

By expressing φ ◦ ψ as (φ ◦ ψ) ◦ idW , we see that Property (b) is equivalent to
the other properties. �

Proof of Proposition 4.2. Let ψ−1 solve the Beltrami equation ∂zf = µφ∂zf
induced by φ. Then Theorem 4.12 proves that ψ is (4K/π)-quasiconformal and
φ̃ = φ ◦ ψ isothermal. �

Proof of Proposition 4.3. The outer and inner dilatation bounds follow from
Theorem 4.12 (d) and the dilatation bounds in Lemma 4.10.

Next, consider an open set U ′ ⊂ R2, V ′ ⊂ V and a quasiconformal homeomor-
phism φ′ : U ′ → V ′. Here φ′ = φ ◦ ψ for ψ = φ−1 ◦ φ′. Theorem 4.12 (d) proves that
φ′ is isothermal if and only if ψ−1, or ψ−1, is orientation-preserving and its Beltrami
differential equals µφ = 0. Thus, [AIM09, Weyl’s lemma] yields that φ′ is isothermal
if and only if ψ is holomorphic or antiholomorphic. �

4.4. Conformal surfaces. We fix a quasiconformal surface (Y, d) for this
section. Given an open set V ⊂ (Y, d) and a quasiconformal homeomorphism
φ′ : U ′ → V with U ′ ⊂ R2, Proposition 4.2 yields the existence of an isothermal
parametrization φ : U → V of V . Given such a φ, we denote f := φ−1 and call the
pair (V, f) an isothermal chart of (Y, d).

Let Id = {(Vi, fi)}i∈I denote the collection of all isothermal charts of (Y, d). Since
a quasiconformal surface (Y, d) can be covered by quasiconformal images of planar
domains, we conclude that

⋃
i∈I Vi = Y . The subscript d refers to the dependence of

the collection on the distance of Y .

Definition 4.13. A conformal atlas D is an atlas whose transition maps are
holomorphic or antiholomorphic maps. A conformal atlas D is maximal if for every
other conformal atlas D′ with D ∩ D′ 6= ∅, we have D′ ⊂ D. If D is a maximal
conformal atlas, the pair (Y,D) is a conformal surface. A smooth surface is defined
analogously.
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Proposition 4.14. The pair (Y, Id) is a conformal surface.
Proof. Proposition 4.3 implies that restrictions of isothermal charts to open sub-

sets of their domains are isothermal charts, and that the transition maps between
isothermal charts are holomorphic or antiholomorphic. Consequently, Id is a confor-
mal atlas. The maximality of Id also follows from Proposition 4.3. �

We define and recall some terminology from Riemannian geometry. A Riemann-
ian norm (field) G on a conformal (or a smooth) surface (Y,A) is a map G : TY → R
for which there exists a smooth Riemannian metric g such that G(v) = [g(v, v)]1/2

for v ∈ TY . Here TY is the tangent bundle of Y .
The length distance induced by g is denoted by dG. We say that dG is the

Riemannian distance induced by G. The metric space (Y, dG) has constant curvature
k if the corresponding Riemannian metric g has constant curvature k. The curvature
refers to Gaussian curvature.

A Riemannian surface is a conformal (or smooth) surface with a Riemannian
norm field. A map ψ : (Y1, G1) → (Y2, G2) between Riemannian surfaces is conformal
in the Riemannian sense if ψ is a diffeomorphism and there exists a positive smooth
function h : Y2 → (0,∞) such that the pushforward Riemannian norm field ψ∗G1

equals h ·G2. A Riemannian norm G is compatible with a conformal atlas I if every
chart (V, f) ∈ I is conformal in the Riemannian sense.

Proposition 4.15. The conformal surface (Y, Id) has a Riemannian distance
dG such that G is compatible with the isothermal charts Id of Y and (Y, dG) is
complete and has constant curvature −1, 0 or 1. Additionally, Id = IdG and the
charts (V, f) ∈ IdG are conformal in the Riemannian sense.

Proof. The existence of G follows from the classical uniformization theorem.
Theorem 4.12 Property (e) and [AIM09, Weyl’s lemma] imply that the elements of
IdG are conformal in the Riemannian sense. The construction of G implies that when
the elements of Id are considered as maps from Euclidean domains into (Y, dG), then
they are conformal in the Riemannian sense. Thus Id = IdG . �

4.5. Uniformization map. Let dG denote the Riemannian distance obtained
from Proposition 4.15. We define YG = (Y, dG) and let Y = (Y, d). We denote the
Hausdorff 2-measure of YG by H2

G.
We call the map u = idY : YG → Y the uniformization map. Proposition 4.15

implies that every isothermal parametrization of V ⊂ Y can be written in the form
u ◦ φ for an isothermal parametrization φ : U → u−1(V ).

Let Y be a quasiconformal surface. If u ◦ φ1 and u ◦ φ2 are isothermal charts
and ψ = φ−1

2 ◦ φ1, then Nu◦φ2 ◦Dψ = Nu◦φ1 by the chain rule. Since Dψ is a
diffeomorphism, the equality actually holds everywhere whenever the left-hand side
or the right-hand side are defined.

Remark 4.16. For a given quasiconformal surface Y , there is a norm field N on
YG such that for every isothermal parametrization u ◦ φ : U → V , its approximate
metric differential Nu◦φ satisfies Nu◦φ = N ◦Dφ everywhere.

Corollary 4.17. Let u be the uniformization map. Then the pointwise dilata-
tions of u satisfy
(24) ρ2(G,N) = KO(u)KI(u) H2

G-almost everywhere,
where ρ(G,N) is the Banach–Mazur distance between (TY,G) and (TY,N). In par-
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ticular,

(25)
π

4
modΓ ≤ mod uΓ ≤ π

2
modΓ

for all path families Γ in YG.

Proof. It suffices to verify (24) and (25) in any given planar domain V ⊂ YG.
Consider an isothermal parametrization φ : U → V ⊂ YG. Remark 4.16 yields
N ◦Dφ = Nu◦φ and Proposition 4.15 implies G ◦ Dφ = ω ‖·‖2 for some smooth
function ω. The equality (24) follows from the corresponding claim about u ◦ φ, see
Theorem 4.12. The inequalities (25) follow the corresponding property of u ◦ φ, see
Proposition 4.3. �

Proof of Theorem 1.3. The claim was that the uniformization map satisfies
KO(u) ≤ 4/π and KI(u) ≤ π/2. These inequalities follow from (25). �

Lemma 4.18. The map u : (Y,H2
G) → (Y, νY ) satisfies Lusin’s Conditions (N)

and (N−1).
Proof. This follows from Lemma 3.3 since νYG ≡ H2

G. �
We sometimes consider the differential

Du : (TY,G) → (TY,N),

where the norm field N is understood to be well-defined νY -almost everywhere in Y .
This makes sense due to Lemma 4.18.

5. Quasiconformal maps between quasiconformal surfaces

Given two quasiconformal surfaces Y1 = (Y1, d1) and Y2 = (Y2, d2), we let YGi
=

(Yi, dGi
) and ui : YGi

→ Yi be as in Section 4.5 for i = 1, 2. For i = 1, 2, we denote
νi = νYi for the measures from Definition 3.1.

Our goal is to understand an analog of Corollary 4.17 for the quasiconformal
surfaces Y1 and Y2 and for an arbitrary quasiconformal map

(26) Ψ: Y1 → Y2.

A technical difficulty is posed by the fact that Ψ can fail to satisfy Lusin’s Condition
(N) and (N−1) with respect to Hausdorff measures. As a consequence, the pointwise
results we prove hold only ν1-almost everywhere.

We observe that the mapping

Ψ̃ = u−1
2 ◦Ψ ◦ u1 : YG1 → YG2

is quasiconformal as a map between two Riemannian surfaces, it is classically differ-
entiable H2

G1
-almost everywhere and it satisfies Lusin’s Conditions (N) and (N−1).

Then Lemma 4.18 implies the following.

Lemma 5.1. The differential

(27) DΨ: (TY1,N1) → (TY2,N2)

is well-defined ν1-almost everywhere. Moreover,

D(Ψ−1) ◦DΨ = DidY1 : (TY1,N1) → (TY1,N1)

ν1-almost everywhere.
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Lemma 5.1 implies that we can compute the operator norm and the Jacobian
of (27) ν1-almost everywhere. These objects are defined as in Section 3. The chain
rule implies that the inverse of (27) is well-defined ν2-almost everywhere. We define
pointwise outer and inner dilatations KO(Ψ) = ρ2Ψ/JΨ and KI(Ψ) = ρ2Ψ−1JΨ, which
are uniquely defined ν1-almost everywhere.

Theorem 5.2. The equalities KO(Ψ) = KO(DΨ) and KI(Ψ) = KI(DΨ) hold
ν1-almost everywhere. In particular, the pointwise dilatations satisfy

(28) KO(DΨ)KI(DΨ) ≥ ρ2(N1,N2 ◦DΨ)

ν1-almost everywhere. The equality (28) holds ν1-almost everywhere if and only if
the differential

DΨ: (TY1,N1) → (TY2,N2)

is a Banach–Mazur minimizer ν1-almost everywhere.

Since Ψ is 1-quasiconformal if and only if the pointwise dilatations satisfyKO(Ψ) =
χY1 and KI(Ψ) = χY1 ν1-almost everywhere, Theorem 5.2 implies the following.

Corollary 5.3. A quasiconformal homeomorphism Ψ: Y1 → Y2 is 1-quasicon-
formal if and only if there exists a Borel function ω : Y1 → (0,∞) such that N2 ◦Dψ =
ωN1 ν1-almost everywhere.

The rest of the section is spent on proving Theorem 5.2. To this end, let B0 ⊂ YG1

be a Borel set of H2
G1

-measure zero such that the restrictions of u1 and u2 ◦ Ψ̃ to
YG1 \B0 satisfy Conditions (N) and (N−1). The existence of such a set is guaranteed
by Lemma 4.18 and by the fact that Ψ̃ satisfies Conditions (N) and (N−1). We fix
such a set for the rest of this section.

Lemma 5.4. The Jacobian JΨ of Ψ equals J2(DΨ) H2
Y1

-almost everywhere in
Y1 \ u1(B0). In particular, this identity holds ν1-almost everywhere.

Proof. The claim is local, so it suffices to consider the claim using isothermal
charts of Y1 and Y2. The isothermal charts satisfy Conditions (N) and (N−1) when
restricted to the complement of u1(B0) and Ψ ◦ u1(B0), respectively. Then the claim
follows from the chain rule of Jacobians of linear maps between Banach spaces [AK00,
Lemma 4.2] and the corresponding Euclidean results formulated in Lemma 4.4 and
Corollary 4.6. �

We fix a Borel set B1 ⊃ B0 of zero H2
G1

-measure for which the following properties
hold:

(a) The maps Y1 \ u1(B1) ∋ y 7→ N1(y) and Y2 \ Ψ(u1(B1)) ∋ y 7→ N2(y) are
norms everywhere and also Borel measurable;

(b) The maps Y1\u1(B1) ∋ y 7→ DΨ(y) and Y2\Ψ(u1(B1)) ∋ y 7→ D(Ψ−1)(y) are
Borel measurable and the chain rule D(Ψ−1) ◦DΨ = DidY1 holds everywhere
in Y1 \ u1(B1).

The set B1 is defined to guarantee that the operator norms of DΨ and its inverse
D(Ψ−1) are well-defined everywhere in the complement of u1(B1) and Ψ(u1(B1)), re-
spectively. Also, the restriction of Ψ to the complement of u1(B1) satisfies Conditions
(N) and (N−1).

Proposition 5.5. The Borel functions x 7→ ‖DΨ‖ (x)
(
χY1\u1(B1)(x)

)
=: IΨ(x)

and x 7→ ‖D(Ψ−1)‖ (x)
(
χY2\Ψ(u1(B1))(x)

)
=: IΨ−1(x) are minimal weak upper gradi-

ents of Ψ and Ψ−1, respectively.
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Proof. First, for almost every non-constant absolutely continuous path θ : [0, 1] →
Y1, the paths u−1

1 ◦θ, Ψ◦θ, and u−1
2 ◦Ψ◦θ are absolutely continuous, and the measures

on [0, 1] induced by their metric speeds are absolutely continuous with respect to one
another.

Second, Lemma 3.3 and Lemma 4.18 imply that the path families Γ+
u1(B1)

and
Γ+
Ψ◦u1(B1)

are negligible. The fact that IΨ is a minimal weak upper gradient of Ψ is a
local property. For this reason, we fix isothermal parametrizations ui ◦ φi : Ui → Vi
for i = 1, 2 with Φ(V1) = V2. Now for almost every path θ : [0, 1] → V1, Lemma 4.4
(c) holds for (u1 ◦ φ1)

−1 ◦ θ and for (u2 ◦ φ2)
−1 ◦ (Ψ ◦ θ).

The previous two paragraphs imply that IΨ is a weak upper gradient of Ψ. To
see the minimality of IΨ, we fix an upper gradient ρ ∈ L2

loc(V1) of Ψ. Fix a rectangle
R ⊂ U1 with a foliation γt(s) = x0 + tv + sw, for −1 ≤ s, t ≤ 1, with v and w
orthogonal. By arguing as in the proof of Lemma 4.7, Fubini’s theorem implies for
L2-almost every x ∈ R \ φ−1

1 (B1) and y = u1(φ1(x)),

(29) ρ(y) Nu1◦φ1((x, w)) ≥ NΨ◦(u1◦φ1)((x, w)).

By slightly modifying the corresponding argument from the proof of Lemma 4.7, the
inequality (29) implies ρ(y) ≥ IΨ(y)H2

Y1
-almost everywhere in V1\u1(B1). Therefore,

IΨ is a representative of ρΨ. The claim for IΨ−1 follows from symmetry, given the
fact from Lemma 3.3 that ν1(B) = 0 if and only if ν2(Ψ(B)) = 0. �

Proof of Theorem 5.2. Lemma 5.4 proves that the Jacobian of Ψ and the
Jacobian J2(DΨ) coincide ν1-almost everywhere. Proposition 5.5 implies that the
operator norm of DΨ determines the minimal weak upper gradient of Ψ ν1-almost
everywhere. This implies that the pointwise outer dilatation of Ψ is determined by
the outer dilatation of DΨ. Similar reasoning holds for the inner dilatation.

The inequality (28) follows from the fact thatDΨ is a linear map between Banach
spaces. The defining property of a Banach–Mazur minimizer yields that DΨ is a
Banach–Mazur minimizer ν1-almost everywhere if and only if the inequality (28) is
an equality ν1-almost everywhere. �

6. Applications

In Section 6.1, we establish the uniqueness of the uniformization map up to
conformal diffeomorphisms. We prove Theorem 1.4 in Section 6.2.

6.1. Isothermal parametrizations using Riemannian surfaces. We start
this section by considering global isothermal parametrizations of quasiconformal sur-
faces.

Definition 6.1. (Isothermal parametrizations) Let Z be a Riemannian surface
and Ψ: Z → Y a quasiconformal map. The pair (Z,Ψ) is an isothermal parametriza-
tion of Y if for every other Riemannian surface Z̃ and quasiconformal map Ψ̃ : Z̃ → Y
we have that

(30) (KO(Ψ)KI(Ψ))(z) ≤ (KO(Ψ̃)KI(Ψ̃))(z̃)

for z̃ = (Ψ̃−1 ◦ Ψ)(z) at H2
Z-almost every z ∈ Z. If the image of the map (Z,Ψ) is

clear from the context, we say that (Z,Ψ) is isothermal. If also the domain is clear,
we simply say that Ψ is isothermal.

The following theorem is a global version of Theorem 4.12.
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Theorem 6.2. The uniformization map u is isothermal. Moreover, the following
are equivalent for every Riemannian surface Z and a quasiconformal homeomorphism
Ψ: Z → Y :

(a) The map Ψ is isothermal;
(b) The composition u−1 ◦Ψ is conformal in the Riemannian sense;
(c) The pointwise dilatations satisfy

(31) (KO(Ψ)KI(Ψ)) ◦ (Ψ−1 ◦ u) = KO(u)KI(u)

H2
G-almost everywhere in YG.

(d) The differential DΨ: (TZ,G) → (TY,N) is a Banach–Mazur minimizer at
H2
Z-almost every point z ∈ Z.

Proof. Since Ψ: Z → Y is quasiconformal, Theorem 5.2 shows that

KO(Ψ)KI(Ψ) ≥ ρ2(GZ ,N ◦DΨ)(32)

= ρ2(GZ ◦D(Ψ−1) ◦Du,N ◦Du) ◦ (u−1 ◦Ψ)

H2
Z-almost everywhere in Z. The composition GZ ◦D(Ψ−1) ◦Du is a norm induced

by a Riemannian norm H2
G-almost everywhere in Y . Therefore the identity

ρ2(GZ ◦D(Ψ−1) ◦Du,N ◦Du) ◦ (u−1 ◦Ψ) = ρ2(G,N ◦Du) ◦ (u−1 ◦Ψ)

holds H2
Z-almost everywhere in Z. Applying Corollary 4.17 to the latter term shows

that

ρ2(GZ ◦D(Ψ−1) ◦Du,N ◦Du) ◦ (u−1 ◦Ψ) = (KO(u)KI(u)) ◦ (u−1 ◦Ψ)(33)

H2
Z-almost everywhere in Z. Now (32) and (33) show that

(34) (KO(Ψ)KI(Ψ)) ◦ (Ψ−1 ◦ u) ≥ KO(u)KI(u)

H2
G-almost everywhere in YG. We deduce from (34) that u is isothermal.

The map Ψ is isothermal if and only if the inequality in (34) is an equality
H2
G-almost everywhere, and, by (32) and (33), this happens if and only if

(35) DΨ: (TZ,GZ) → (TY,N)

is a Banach–Mazur minimizer H2
Z-almost everywhere. Hence, Properties (a), (c),

and (d) are equivalent.
Having verified that Properties (a) and (d) are equivalent, we see that the prop-

erty of being isothermal is a local property. Hence, the equivalence of Properties (a)
and (b) follow after we verify the equivalence in the domain of an arbitrary isothermal
chart of Z.

Let φ1 : U1 → V1 ⊂ Z be an isothermal parametrization of a domain V1 ⊂ Z.
Then Nφ1 = GZ ◦Dφ1 = ω ‖·‖2 for some smooth function ω > 0. Observe that Ψ|V1
is isothermal if and only if Ψ ◦ φ1 is isothermal. Proposition 4.15 implies that the
latter property holds if and only if u−1 ◦ (Ψ ◦ φ1) is conformal in the Riemannian
sense if and only if u−1 ◦Ψ|V1 is conformal in the Riemannian sense. This establishes
the claim. �

Theorem 6.2 can be applied, for example, in the following manner. Given an
isothermal map Φ: Z → Y and a 1-quasiconformal homeomorphism f : Y → Y , the
mapping Φ−1 ◦ f ◦ Φ: Z → Z is conformal in the Riemannian sense. To see why, we
first apply Corollary 5.3 to show that f ◦Φ is isothermal. Then Theorem 6.2 implies
that Φ−1◦(f ◦Φ) is conformal in the Riemannian sense. This fact imposes a structure
and size restriction on the group generated by such f . A similar reasoning implies that
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for any given 1-quasiconformal homeomorphism f : Y1 → Y2 and isothermal Φi : Zi →
Yi, the homeomorphism Φ−1

2 ◦f ◦Φ1 : Z1 → Z2 is conformal in the Riemannian sense.
6.2. Quasisymmetries. In this section, we investigate properties of isothermal

charts of (Y, dY ) under the assumption that (Y, dY ) is compact, Ahlfors 2-regular,
and linearly locally contractible.

6.2.1. Basic definitions. Let Y and Z be metric spaces. For a homeomorphism
φ : Y → Z, y ∈ Y and r > 0, let

Lφ(y, r) = sup {dZ(φ(y), φ(w)) | dY (y, w) ≤ r} and
lφ(y, r) = inf {dZ(φ(y), φ(w)) | dY (y, w) ≥ r} .

The map φ is quasisymmetric if there exists a homeomorphism η : [0,∞) → [0,∞)
for which for every y ∈ Y and 0 < r1, r2 < diamY ,

(36) Lφ(y, r1) ≤ η

(
r1
r2

)
lφ(y, r2).

Such a homeomorphism η is called a (quasisymmetric) distortion function of φ and
we say that φ is η-quasisymmetric.

A metric surface Y is Ahlfors 2-regular if there exists a constant CA ≥ 1 such
that for every y ∈ Y and diamY > r > 0,

(37) C−1
A r2 ≤ H2

Y (B(y, r)) ≤ CAr
2.

Here B(y, r) ⊂ Y is the closed ball of radius r centered at y.
Let λ ≥ 1. A metric surface Y is λ-linearly locally contractible if for every y ∈ Y

and 0 < r < diamY
λ

, the metric ball B(y, r) is contractible inside the ball B(y, λr).
That is, there exists y0 ∈ B(y, λr) and a continuous map H : B(y, r) × [0, 1] →
B(y, λr) such that H(z, 0) = z and H(z, 1) = y0 for every z ∈ B(y, r).

6.2.2. Global parametrizations of compact surfaces. When we say that
something in this section depends only on the data of Y , we mean that it depends
only on CA and λ, defined as above. Theorem 1.4 is an immediate consequence of
Theorem 6.3 and Theorem 6.4.

Theorem 6.3. Suppose that Y is an Ahlfors 2-regular metric surface that is
linearly locally contractible and homeomorphic to S2. Then there exists a Riemannian
distance dG′ on Y of constant curvature 1 for which

u′ = idY : YG′ → Y

is isothermal and η-quasisymmetric with η depending only on the data of Y .
Proof. Let (Y, dG) = YG denote the Riemannian surface obtained from Propo-

sition 4.15. The surface has curvature equal to one. The uniformization map
u = idY : YG → Y is isothermal, and therefore π

2
-quasiconformal.

We fix an isometry I : S2 → YG, and choose three points p1, p2, p3 ∈ Y such
that dY (pi, pj) ≥ diamY/2 for each i 6= j. There exists a Möbius transformation
M : S2 → S2 so that v′ = u◦I◦M takes the north pole to p1, the south pole to p3, and a
point from the equator to p2. Since v′ is (π/2)-quasiconformal, v′ is η-quasisymmetric
with η depending only on the data of Y ; see [BK02, Proposition 9.1 and Section 3].
We denote dG′(x, y) := dS2((I ◦ M)−1(x), (I ◦ M)−1(y)) for all x, y ∈ YG and set
YG′ := (Y, dG′). Then the identity mapping u′ : (Y, dG′) → (Y, dY ) is isothermal and
η-quasisymmetric. �
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Theorem 6.4. Suppose that Y is a compact Ahlfors 2-regular and linearly lo-
cally contractible metric surface that is not homeomorphic to S2. Then the uni-
formization map

(38) u = idY : YG → Y

is η-quasisymmetric, where η depends only on the data of Y .

We postpone the proof of Theorem 6.4 until the end of this section.
Lemma 6.5. Let Y be a quasiconformal surface and suppose that φ : D → V ⊂

Y is an η-quasisymmetric homeomorphism. Then φ is K-quasiconformal with K de-
pending only on η. Moreover, there exists a (4K/π)-quasiconformal homeomorphism
ψ : D → D such that ψ(0) = 0 and φ ◦ ψ is an isothermal η′-quasisymmetric map
with η′ depending only on η.

Proof. It follows from [Tys00, Theorem 3.13] that the outer dilatation of φ
is bounded by some constant KO depending only on η. Since V has a (π/2)-
quasiconformal chart, the inner dilatation bound (π/2)2KO of φ follows from Eu-
clidean regularity results [AIM09, Definition 3.1.1 and Theorem 3.7.7]. Therefore, φ
is K-quasiconformal with K = (π/2)2KO.

Proposition 4.2 and the Riemann mapping theorem, together with Proposi-
tion 4.3, imply the existence of a (4K/π)-quasiconformal mapping ψ : D → D with
ψ(0) = 0 such that φ ◦ ψ is isothermal. Corollary 3.10.4 of [AIM09] implies that ψ
is η̃-quasisymmetric with η̃ depending only on the maximal dilatation of ψ. Hence,
φ◦ψ is η ◦ η̃-quasisymmetric. Since K and η̃ depend only on η, the claim follows. �

Proposition 6.6. Let YG be a complete Riemannian surface of curvature −1, 0,
or 1 and

φ : D → YG

a conformal embedding. Suppose that YG is not homeomorphic to the sphere S2 or
that

2 diamφ(D) ≤ diamYG.

Then there is a constant 2−1 > β > 0 and a distortion function η̃ for which

(39) φ(βD) ⊂ BG

(
φ(0),

lφ(0,
1
2
)

6

)

and the restriction of φ to βD is η̃-quasisymmetric. The constant β and distortion
function η̃ are independent of φ and the surface YG.

Proof. First, suppose that YG is not homeomorphic to the sphere S2. The surface
YG has a universal cover π : Ω → YG, where π is a local isometry and where Ω is
either the hyperbolic disk Dhyp, the Euclidean plane R2, or the Riemann sphere S2.
If Ω = S2, the covering group of π is generated by the antipodal map.

Suppose that φ : D → YG is as in the claim. Then there exists a conformal
embedding ψ : D → Ω for which φ = π ◦ ψ. Since φ is an embedding, so are ψ and
the restriction of π to the image of ψ.

Claim (1): There exists a 2−1 > β ′ > 0 and a distortion function η for which the
restriction of ψ to β ′D is η-quasisymmetric.

Proof of Claim (1): If Ω is the hyperbolic disk or the Euclidean plane, the
existence of β ′ and η follows from Propositions 5 and 7 of [GW18] (which are stated
for the case when ψ is orientable. However, the non-orientable case follows from the
orientable one by applying the conjugate map z 7→ z in the Euclidean unit disk D).
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Consider the case Ω = S2. We rotate the sphere S2 in such a way that ψ(0) =
(0, 0,−1). Moreover, we identify S2 with the extended plane R2 ∪ {∞} using the
stereographic projection τ : S2 → R2∪{∞} which fixes the equator S1 = S1×{0} ⊂ R3

and maps the south pole (0, 0,−1) to 0. With this identification, τ maps the southern
hemisphere to the unit disk D. Recall that τ is a conformal map.

By construction, the restriction of π to the image of ψ is injective. We claim
that ψ(10−1D) is contained in the southern hemisphere. We prove this by employing
the following growth estimate for conformal embeddings [Dur83, Theorem 2.6]: If
0 < r < 1 and ‖x‖2 = r, then

(40) ‖D(τ ◦ ψ)‖ (0) r

(1 + r)2
≤ ‖τ ◦ ψ‖2 (x) ≤ ‖D(τ ◦ ψ)‖ (0) r

(1− r)2
.

If ψ(10−1D) is not contained in the southern hemisphere, then (40) implies that

(41)
81

10
≤ ‖D(τ ◦ ψ)‖ (0).

Then (40) and (41) imply that τ ◦ ψ(2−1D) contains the closed unit disk D. This is
a contradiction with the injectivity of π in the image of ψ.

The restriction of the stereographic projection τ to the southern hemisphere is a
biLipschitz map. Also, the restriction of τ ◦ψ to the disk 10−1D is η′-quasisymmetric
with η′ independent of ψ [AIM09, Theorem 3.6.2]. The existence of β ′ and η follows.

Claim (2): Let β ′ > 0 be as in Claim (1). There exists a constant β ′ > β ′′ > 0
such that

(42) ψ(β ′′D) ⊂ BdΩ

(
ψ(0),

lψ(0,
1
2
)

6

)
.

Proof of Claim (2): Suppose that β ′ > 0 and η are as in Claim (1) and consider
β ′ > β ′′ > 0. Since the restriction of ψ to the disk β ′D is η-quasisymmetric,

Lψ(0, β
′′) ≤ η

(
β ′′

β ′

)
lψ(0, β

′) ≤ η

(
β ′′

β ′

)
lψ

(
0,

1

2

)
.

Therefore, it suffices to pick β ′′ > 0 so small that η
(
β′′

β′

)
< 1

6
. Claim (2) follows.

We complete the proof of the claim using Claims (1) and (2) (when YG is not
homeomorphic to S2). Recall that the restriction of π to ψ(D) is injective. Let β ′′ > 0
be as in Claim (2). Since

BdΩ

(
ψ(0), lψ

(
0,

1

2

))
⊂ ψ

(
2−1D

)
,

the restriction of π to BdΩ

(
ψ(0), 6−1lψ

(
0, 1

2

))
is an isometry onto its image. This is

an immediate consequence of the fact that

dG(x, y) = inf
{
dΩ(x

′, y′) | x′ ∈ π−1(x) and y′ ∈ π−1(y)
}
.

In conclusion, the map ψ can be replaced with φ and Ω with YG everywhere in
Claims (1) and (2). We define β = β ′′ as in Claim (2) and η̃ = η as in Claim (1) to
conclude the proof of Proposition 6.6 when YG is not homeomorphic to S2.

We are left to consider the case when YG is homeomorphic to S2. Then there exists
an isometry π : S2 → YG. Therefore, there exists a conformal embedding ψ : D → S2

for which φ = π ◦ ψ. By rotating the sphere, we can assume that ψ(0) is the south
pole. The diameter bound on the image of φ implies that ψ(10−1D) is contained in
the southern hemisphere. The rest of the proof is argued as above. �
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For the rest of the section, we assume that diamY = 1. This can be done without
loss of generality since the properties we study are left unchanged by rescaling. The
diameter normalization is needed for the results we use from [GW18]. We formulate
the following corollary of [GW18, Theorem 9] and Lemma 6.5.

Proposition 6.7. There is a quantity A0 ≥ 1 and a distortion function η, each
depending only on the data of Y , such that for every 0 < R ≤ 1

A0
and y ∈ Y , there

is a neighbourhood U of y for which
(a) B(y, R

A0
) ⊂ U ⊂ B(y, A0R);

(b) there exists an η-quasisymmetric homeomorphism f : U → D that is an
isothermal chart of Y with f(y) = 0.

The only difference between [GW18, Theorem 9] and Proposition 6.7 is the con-
dition that f is an isothermal chart. We state next a modified version of [GW18,
Lemma 10].

Lemma 6.8. Suppose that 2−1 > β > 0 is the constant in Proposition 6.6 and
η is as in Proposition 6.7. Then there exist radii α and r0 > 0 and a positive integer
n such that the following statements hold.

(a) There exists an atlas Aβ = {(Uj, fj)}nj=1, where fj(Uj) = D and each fj is an
η-quasisymmetric isothermal chart of Y .

(b) Let xj = f−1
j (0). The collection {B(xj , r0)}nj=1 is pairwise disjoint.

(c) The collection {B(xj , 2r0)}nj=1 covers Y .
(d) For each j = 1, . . . , n, we have B(xj , 10r0) ⊂ Uj and

αD ⊂ fj(B(xj , r0)) ⊂ fj(B(xj , 10r0)) ⊂ βD.

The radii α and r0, and the integer n depend only on the data of Y and β.

Lemma 6.8 is proved exactly as [GW18, Lemma 10], but instead of applying
[GW18, Theorem 9] as in the proof of [GW18, Lemma 10], we apply Proposition 6.7.

Proof of Theorem 6.4. Let (Y, dG) = YG denote the Riemannian surface obtained
from Proposition 4.15. The surface YG has curvature equal to 1, 0, or −1 and is not
homeomorphic to S2. Let u = idY : YG → Y denote the uniformization map.

Recall that the claim is that u is quasisymmetric with distortion depending only
on the data of Y . It suffices to prove that v = u−1 = idY : Y → YG is quasisymmetric
with quasisymmetric distortion function depending only on the data of Y .

For the duration of the proof, we use the notations introduced in Lemma 6.8,
and denote ψj = v ◦ f−1

j : D → YG. We first observe that for each j = 1, 2, . . . , n,

(43) v
∣∣
B(xj ,10r0)

= ψj ◦ fj
∣∣
B(xj ,10r0)

is η1-quasisymmetric

with η1 = η̃ ◦ η, where η is from Lemma 6.8 and η̃ from Proposition 6.6. Recall that
η̃ is independent of Y and the η depends only on the data of Y .

Next, we claim that for each x, x′ ∈ Y with dY (x, x′) = 4r0,

(44) dG(v(x), v(x
′)) ≥ δ = C−1 diamYG,

where C depends only on the data of Y . To this end, since {B(xj , 2r0)}nj=1 covers Y ,
the union

⋃n
j=1 ψj(βD) covers YG. As YG is connected, we conclude

(45) max
j

{diamψj(βD)} ≥ diamYG
n

.
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Consider a pair of indices i, k = 1, 2, . . . , n with dY (xi, xk) < 4r0. Then xk ∈
B(xi, 10r0), so Lemma 6.8 implies dG(v(xi), v(xk)) ≤ Lψi

(0, β). If i and k are distinct,
dY (xi, xk) > r0, so the same lemma implies dG(v(xi), v(xk)) ≥ ℓψi

(0, α). Observe that

ℓψi
(0, α) ≥ Lψi

(0, β)

η̃
(
β
α

) ≥ diamψi(βD)
2η̃

(
β
α

) .

We have now verified that the quantities

(46) ℓψi
(0, α), Lψi

(0, β), diamψi(βD), dG(v(xi), v(xk))
are comparable with constants depending only on the data of Y .

Observe that for every pair i, j = 1, 2, . . . , n with i 6= j, there exists m ≤ n and
a chain {xik}mk=1 with xi1 = xi and xim = xj , and 4r0 > dY (xik , xik+1

) > r0 for each
k = 1, 2, . . .m − 1. Recall from Lemma 6.8 that n depends only on the data of Y .
This fact and (46) imply that there exists C0 > 0, depending only on the data of Y ,
such that for every pair i, j = 1, 2, . . . , n,

(47) ℓψi
(0, α) ≥ diamψj(βD)

C0

.

Given the inequalities (45) and (47), we have

(48) ℓψi
(0, α) ≥ diamYG

nC0

for every i.

Suppose that x, x′ ∈ Y with dY (x, x
′) = 4r0. Then there exist i and k such that

dY (x, xi) < 2r0 and dY (x
′, xk) < 2r0. As 2r0 ≤ dY (x

′, xi) ≤ 6r0, we have x, x′, xk ∈
B(xi, 10r0). Then (43) implies

(49) dG(v(x
′), v(x)) ≥ dG(v(x

′), v(xi))

η1(3/2)
.

Since x′ ∈ Y \BY (xi, r0), the inequality (48) yields that

(50) dG(v(x
′), v(xi)) ≥ ℓψi

(0, α) ≥ diamYG
nC0

.

The inequality (44) follows from the inequalities (49) and (50).
Lastly, Lemma 6.8 implies that L = 8r0 is a Lebesgue number of {B(xj , 10r0)}nj=1.

Then a theorem by Tukia and Väisälä, as formulated in [GW18, Theorem 4], states
that v is η2-quasisymmetric, where η2 depends only on η1 from (43) and the ratios
diamY
L

= 1
L

and diamYG
δ

, where δ is from (44). Hence η2 depends only on the data of
Y . This implied the claim. �

7. Concluding remarks

The classical uniformization theorem states that every smooth Riemannian sur-
face Y is 1-quasiconformally equivalent to a complete Riemannian surface of curva-
ture −1, 0, or 1. For such Y , our uniformization map u : YG → Y is 1-quasiconformal.
Given this observation, we pose the following question.

Open Problem A. Let Y be a quasiconformal surface. Is Y 1-quasiconformally
equivalent to a metric surface Z with desirable geometric properties?

One might ask if Open Problem A holds in such a way that Z is bi-Lipschitz
equivalent to the space YG obtained from Proposition 4.15, or even if the space is√
2-bi-Lipschitz equivalent to YG.
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When (Y, dY ) is constructed from a sufficiently regular norm field on a smooth
surface, such a Z can be constructed using John’s theorem and regularity results for
Beltrami differential equations. However, we cannot always take in Open Problem A
the surface Z to be bi-Lipschitz equivalent to YG, or to any other Riemannian surface.

Theorem 7.1. [IRar, Theorem 1.6] There exists a distance d on R2 such that
the identity map ι : (R2, ‖·‖2) → (R2, d) is an isothermal parametrization, but ι does
not factor as ι = ι̂ ◦ P , where (Z, dZ) is a metric surface, ι̂ : (Z, dZ) → (R2, d)
is quasiconformal with distortion H(ι̂) <

√
2 and P : (R2, ‖·‖2) → (Z, dZ) is bi-

Lipschitz.

Here H(ι̂) = ess sup
√
KO(ι̂)(x)KI(ι̂)(x) for the pointwise dilatations of ι̂. The-

orem 7.1 shows that we cannot require in Open Problem A Z to be bi-Lipschitz
equivalent to YG, even if we allow for non-conformal distortion 1 < H(ι̂) <

√
2. We

note that the isothermal parametrization ι in Theorem 7.1 has distortion exactly
H(ι) =

√
2.

It is not clear whether Z in Open Problem A can be chosen in such a way that Z
is locally quasisymmetrically equivalent to some Riemannian surface, or even what
is the answer to the following problem.

Open Problem B. Is every quasiconformal surface 1-quasiconformally equiva-
lent to a metric surface Z that is locally Ahlfors 2-regular and locally linearly locally
contractible?

We note that Open Problem A is trivially true for each quasiconformal surface for
which the uniformization map is 1-quasiconformal. This holds, for example, when
(Y, dY ) has bounded integral curvature [Res01] and [BL03], or (Y, dY ) ⊂ RN for
N ≥ 2.

References

[AB60] Ahlfors, L., and L. Bers: Riemann’s mapping theorem for variable metrics. - Ann.
of Math. (2) 72, 1960, 385–404.

[AS60] Ahlfors, L.V., and L. Sario: Riemann surfaces. - Princeton Math. Ser. 26, Princeton
Univ. Press, Princeton, N.J., 1960.

[AK00] Ambrosio, L., and B. Kirchheim: Rectifiable sets in metric and Banach spaces. -
Math. Ann. 318:3, 2000, 527–555.

[AIM09] Astala, K., T. Iwaniec, and G. Martin: Elliptic partial differential equations and
quasiconformal mappings in the plane. Princeton Math. Ser. 48, Princeton Univ. Press,
Princeton, NJ, 2009.

[Bog07] Bogachev, V. I.: Measure theory. Volumes I, II. - Springer-Verlag, Berlin, 2007.

[BK02] Bonk, M., and B. Kleiner: Quasisymmetric parametrizations of two-dimensional met-
ric spheres. - Invent. Math. 150:1, 2002, 127–183.

[BL03] Bonk, M., and U. Lang: Bi-Lipschitz parameterization of surfaces. - Math. Ann. 327:1,
2003, 135–169.

[Dud07] Duda, J.: Absolutely continuous functions with values in a metric space. - Real Anal.
Exchange 32:2, 2007, 569–581.

[Dur83] Duren, P. L.: Univalent functions. Grundlehren Math. Wiss. 259, Springer-Verlag, New
York, 1983.

[GW18] Geyer, L., and K. Wildrick: Quantitative quasisymmetric uniformization of compact
surfaces. - Proc. Amer. Math. Soc. 146:1, 2018, 281–293.



180 Toni Ikonen

[HKST15] Heinonen, J., P. Koskela, N. Shanmugalingam, and J. T. Tyson: Sobolev spaces
on metric measure spaces. An approach based on upper gradients. - New Math. Monogr.
27, Cambridge Univ. Press, Cambridge, 2015.

[Hub06] Hubbard, J. H.: Teichmüller theory and applications to geometry, topology, and dy-
namics. Volume 1. - Matrix Editions, Ithaca, NY, 2006.

[IRar] Ikonen, T., and M. Romney: Quasiconformal geometry and removable sets for con-
formal mappings. - J. Anal. Math. (to appear).

[IT92] Imayoshi, Y., and M. Taniguchi: An introduction to Teichmüller spaces. - Springer-
Verlag, Tokyo, 1992.

[Leh87] Lehto, O.: Univalent functions and Teichmüller spaces. - Grad. Texts in Math. 109,
Springer-Verlag, New York, 1987.

[LW18] Lytchak, A., and S. Wenger: Intrinsic structure of minimal discs in metric spaces. -
Geom. Topol. 22:1, 2018, 591–644.

[Raj17] Rajala, K.: Uniformization of two-dimensional metric surfaces. - Invent. Math. 207:3,
2017, 1301–1375.

[RRR21] Rajala, K., M. Rasimus, and M. Romney: Uniformization with infinitesimally metric
measures. - J. Geom. Anal. 31, 2021, 11445–11470.

[Res01] Reshetnyak, Yu.G.: On the conformal representation of Alexandrov surfaces. -
In: Papers on analysis, Rep. Univ. Jyväskylä Dep. Math. Stat. 83, Univ. Jyväskylä,
Jyväskylä, 2001, 287–304.

[Rom19] Romney, M.: Quasiconformal parametrization of metric surfaces with small dilatation.
- Indiana Univ. Math. J. 68:3, 2019, 1003–1011.

[TJ89] Tomczak-Jaegermann, N.: Banach–Mazur distances and finite-dimensional operator
ideals. - Pitman Monogr. Surveys Pure Appl. Math. 38, Longman Scientific & Technical,
Harlow; John Wiley & Sons, Inc., New York, 1989.

[Tys00] Tyson, J. T.: Analytic properties of locally quasisymmetric mappings from Euclidean
domains. - Indiana Univ. Math. J. 49:3, 2000, 995–1016.

[Wil12] Williams, M.: Geometric and analytic quasiconformality in metric measure spaces. -
Proc. Amer. Math. Soc. 140:4, 2012, 1251–1266.

Received 18 December 2020 • Accepted 5 March 2021 • Published online 13 December 2021

Toni Ikonen
University of Jyväskylä
Department of Mathematics and Statistics
P. O. Box 35 (MaD)
FI-40014 University of Jyväskylä, Finland
toni.m.h.ikonen@jyu.fi



[B]

Quasiconformal geometry and removable sets for conformal
mappings

T. Ikonen and M. Romney

Journal d’Analyse Mathématique, to appear

Reprinted with kind permission



QUASICONFORMAL GEOMETRY AND REMOVABLE SETS FOR
CONFORMAL MAPPINGS

TONI IKONEN AND MATTHEW ROMNEY

Abstract. We study metric spaces defined via a conformal weight, or more
generally a measurable Finsler structure, on a domain Ω ⊂ R2 that vanishes
on a compact set E ⊂ Ω and satisfies mild assumptions. Our main question
is to determine when such a space is quasiconformally equivalent to a planar
domain. We give a characterization in terms of the notion of planar sets that
are removable for conformal mappings. We also study the question of when
a quasiconformal mapping can be factored as a 1-quasiconformal mapping
precomposed with a bi-Lipschitz map.
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1. Introduction

1.1. Overview. Let (X, dX) and (Y, dY ) be metric spaces with locally finite Haus-
dorff 2-measure. A homeomorphism f : X → Y is K-quasiconformal if there exists
K ≥ 1 such that

(1) K−1 mod Γ ≤ mod fΓ ≤ K mod Γ

for all path families Γ in X, where mod Γ denotes the conformal modulus of Γ. The
map f is quasiconformal if it is K-quasiconformal for some K ≥ 1. This definition
is generally referred to as the geometric definition of quasiconformal mappings, and
it is one of several possible generalizations of Euclidean quasiconformal maps to the
setting of metric spaces. The definition of modulus, as well as other terms used in
this introduction, is reviewed in Section 2.

The quasiconformal uniformization problem asks one to determine which metric
spaces can be mapped onto a domain in the Euclidean plane or the 2-sphere by a
mapping that is quasiconformal, according to one of the several definitions. This
problem is based on the classical uniformization theorem, which states that every
simply connected Riemannian 2-manifold is conformally equivalent to either the
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Euclidean plane, the 2-sphere, or the hyperbolic plane. Outside the 2-dimensional
Riemannian setting, conformality is a very strong property, and it is natural to
require only quasiconformality. Motivation comes from connections to neighboring
fields such as complex dynamics [BM17] and geometric group theory [Bon06].

In the following, let (X, d) be a metric space homeomorphic to a 2-dimensional
manifold and having locally finite Hausdorff 2-measure. Such a space is referred to
in this paper as a metric surface. By quasiconformal surface, we mean a metric sur-
face (X, d) that is quasiconformally equivalent to a smooth Riemannian 2-manifold.

The uniformization problem for metric surfaces has been studied recently using
various axiomatic approaches. Rajala has proved that a metric surface X homeo-
morphic to R2 is a quasiconformal surface if and only if it satisfies a condition called
reciprocality (Definition 2.8 below) [Raj17]. Roughly speaking, this condition says
that X does not have too many more rectifiable paths, as quantified by conformal
modulus, than Euclidean space. In this case, as shown in [Rom19], there exists a
quasiconformal map f : X → Ω ⊂ R2 that satisfies the modulus inequality

2

π
mod Γ ≤ mod fΓ ≤ 4

π
mod Γ

for all path families Γ inX. This inequality is sharp, as can be shown by considering
the plane equipped with either the ‖·‖1- or ‖·‖∞-norm. These results are extended
to arbitrary metric surfaces in [Iko21]. A different approach was taken in a series of
papers of Lytchak and Wenger [LW17], [LW18], [LW20] based on the assumption
that the space satisfies a quadratic isoperimetric inequality.

The goal of the present paper is to understand the uniformization results de-
scribed above in the context of concrete constructions of metric surfaces. We study
a general scheme for constructing surfaces based on specifying a measurable Finsler
structure on a planar domain that vanishes on some subset of the plane. The nat-
ural problem is to decide when this construction yields a quasiconformal surface.

We provide an answer by linking the uniformization problem for metric surfaces
to a separate topic in complex analysis: removable sets for classes of holomorphic
functions. There are several notions of removability; see [You15] for a recent survey.
For us, the relevant definition is the following. A compact set E ⊂ R2 is removable
for conformal mappings if every conformal embedding f : R2 \ E → R̂2 extends
to a conformal mapping f̃ : R̂2 → R̂2, that is, to a Möbius transformation. Here,
R̂2 denotes the extended plane, which can be identified with S2 via stereographic
projection. There seems to be no standard terminology for sets satisfying this
condition. This is referred to as S-removability in the survey [You15], while the
terms set of absolute area zero and neglible set for extremal distance are also used.
Note that this is different from the notion of conformal removability, which requires
that every homeomorphism of R̂2 that is conformal on the set R̂2 \E be a Möbius
transformation.

This connection to removable sets is natural in hindsight but does not appear
to have been made before. On the other hand, removable sets are inherently con-
nected to a different type of uniformization problem, namely of multiply connected
planar domains onto some canonical class of domain, typically slit domains or circle
domains. We recall that whether an arbitrary planar domain can be mapped con-
formally onto a circle domain is the well-known Koebe Kreisnormierungsproblem
[HS93]. We hope the present paper will add a new perspective on these various
topics.

1.2. Motivating examples. A basic observation, made in Example 2.1 in [Raj17],
is that not every metric surface is a quasiconformal surface. A simple example is
the following. Define a length pseudometric dσ on R2 via the conformal weight
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σ = χR2\D. More precisely, we define the σ-length of an absolutely continuous path
γ to be `σ(γ) =

∫
γ
σ ds, and let dσ(x, y) = inf `σ(γ), the infimum taken over all

absolutely continuous paths γ connecting x and y. If we let X be the quotient
space of R2 formed by collapsing the unit disk to a single point, then dσ induces a
metric on X, denoted by d̃σ, that is locally Euclidean outside the origin. The space
(X, d̃σ), while being homeomorphic to R2, is not quasiconformally equivalent to a
planar domain. This is because the family of paths in X that intersect the collapsed
point has positive modulus, while the modulus of the family of paths intersecting
a single point in the Euclidean plane is zero. This example is included as Example
11.3 in [LW18].

A second example, and the one that comprises Example 2.1 in [Raj17], is a con-
tinuous conformal weight σ that vanishes on a Cantor set E of positive area. In
this case, dσ is a metric on R2, and the identity map (R2, ‖ · ‖2) → (R2, dσ) is a
homeomorphism. Nevertheless, the vanishing of the weight increases the confor-
mal modulus of path families in (R2, dσ) in a way incompatible with admitting a
quasiconformal parametrization by R2.

At the other extreme, it is not hard to show that if the analogous construction
is carried out for a set E with Hausdorff dimension smaller than one, then the
resulting space is quasiconformally equivalent to the plane. Indeed, the set E is
then negligible for length and so has no effect on modulus. What happens in the
intermediate situation—when the Hausdorff dimension satisfies 1 ≤ dimHE < 2 or
when H2(E) = 0—is not a priori clear and is one of the motivations of our work.

Similar constructions appear in a number of related contexts. One of these is the
notion of strong A∞-weight introduced by David and Semmes in [DS90]. Such a
weight determines a metric on R2 that is Ahlfors 2-regular and quasisymmetrically
equivalent to the plane. Conversely, the Jacobian of a quasisymmetric mapping
from R2 to an Ahlfors 2-regular metric space induces a strong A∞-weight on R2. We
do not define this term here but refer the reader to [Sem96, Def. 1.5]. Such weights
appear naturally when trying to recognize metric spaces that are bi-Lipschitz em-
beddable in some Euclidean space. See [DS90, Sem93, Sem96, Laa02, Bis07] for
various contributions to this topic. A separate set of papers [BKR98, BHR01]
studies metrics on the unit disk defined by conformal weights satisfying a Harnack-
type inequality and an area growth condition, and shows that a number of results of
classical complex analysis have natural analogues in this setting. All of the metric
surfaces constructed in these two sets of papers are quasiconformally equivalent to
a planar domain.

In the above examples, when a space fails to be a quasiconformal surface, this
is due to the space “collapsing” on the set E where the weight vanishes. In fact, it
may be the case that this is essentially the only way that a metric surface can fail
to admit a quasiconformal parametrization. This is made precise by the following
question of Rajala and Wenger [Raj20].

Question 1.1. Let (X, d) be a metric space homeomorphic to R2 with locally
finite Hausdorff 2-measure. Does there exist a domain Ω ⊂ R2 and a surjective
continuous monotone mapping f : Ω → X such that f is in the metric Sobolev
space N1,2

loc (Ω, X) and satisfies the one-sided dilatation condition

g2
f (x) ≤ KJf (x)

for some constant K ≥ 1 and almost every x ∈ Ω?

Here, gf is the minimal weak upper gradient of f and Jf is the Jacobian of f ;
see Section 2.2. We say that f : Ω→ X is monotone if the preimage of every point
x ∈ X is a connected and compact subset of Ω.
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1.3. Setting and main results. Let Ω be a planar domain and E ⊂ Ω be a
compact set that does not separate Ω. We consider a measurable seminorm field
N : Ω × R2 → [0,∞) that vanishes exactly on the set E and satisfies certain mild
assumptions, namely lower semicontinuity, local boundedness, and having locally
bounded distortion. The seminorm at the point x ∈ Ω is denoted throughout this
paper by Nx. We think of N as a Finsler structure on R2, determining a Finsler
metric on R2, although requiring no regularity beyond the previous assumptions.

For conciseness, and since Nx is a norm for all x ∈ Ω \E, we use the term norm
field and not seminorm field throughout this paper when referring to N . A norm
field N satisfying the above hypotheses is said to be admissible (Definition 3.1).
We define the N -length of an absolutely continuous path γ : I → Ω by

(2) `N (γ) =

∫

I

N ◦Dγ(t) dt.

In interpreting (2), note that the base point of N is understood to be γ(t) even
though this is omitted from the notation. One then obtains a pseudometric dN on
Ω by setting dN (x, y) = inf `N (γ), the infimum taken over all absolutely continuous
paths γ from x to y contained in Ω. Let EN denote the collection of equivalence
classes of points in R2, declaring x to be equivalent to y if dN (x, y) = 0. Then dN
determines a metric on the quotient space R2/EN denoted by d̃N . In Section 3, we
describe this construction in more detail.

We make the following definition.

Definition 1.2. The admissible norm field N is reciprocal if the corresponding
space (Ω/EN , d̃N ) is reciprocal (Definition 2.8).

The natural problem is to characterize as best as possible those norm fields N
that are reciprocal. Our first result is the following.

Theorem 1.3. Let Ω ⊂ R2 be a domain and E ⊂ Ω a compact set. If E is
removable for conformal mappings, then every admissible norm field N : Ω×R2 →
[0,∞) that vanishes exactly on E is reciprocal.

Recall that our definition of admissibility includes the statement that N is lo-
cally bounded. It turns out that this assumption can be relaxed. In Proposition 4.5,
we show that Theorem 1.3 still holds provided there exists some p > 2 such that
the maximal stretching L(N) is in Lploc(Ω). This generalization follows from Theo-
rem 1.3 by an approximation argument.

Next, we consider whether some converse to Theorem 1.3 holds. Observe first
that the strongest possible converse to Theorem 1.3 is false: a reciprocal norm field
N may vanish on a set E that is not removable for conformal mappings. As a
simple example, take E ⊂ R2 to be a snowflake arc and let N = χR2\E‖ · ‖2. Since
H1
‖·‖2(|γ| ∩E) = 0 for every absolutely continuous path γ, we see that dN actually

coincides with the Euclidean metric. However, it is a consequence of the Riemann
mapping theorem that any compact set that is removable for conformal mappings
is totally disconnected.

On the other hand, if one requires that the norm field N decays fast enough near
E and N is reciprocal, then examples of the type just described are not possible. To
illustrate this, consider two admissible norm fields N1 and N2 that satisfy N1 ≤ N2.
Every path that has finite N2-length also has finite N1-length, while the opposite
may fail to be true for a large family of paths. In this sense, the space generated by
the smaller norm field N1 has more rectifiable paths and the reciprocality condition
is harder to satisfy. This leads to the following partial converse to Theorem 1.4.
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Theorem 1.4. Let Ω ⊂ R2 be a domain and E ⊂ Ω a compact set that does not
separate Ω, and let Np(x) = min

{
1, d‖·‖2(x,E)p

}
‖ ·‖2. If Np is reciprocal for some

p > max {dimHE − 1, 0}, then the set E is removable for conformal mappings.

Our method of proof actually yields a stronger conclusion. The relevant property
of the norm field N = Np, verified in Lemma 5.1 below, is that the quotient map
πN maps E onto a set of zero 1-dimensional Hausdorff measure with respect to
the metric d̃N . Thus, for any reciprocal norm field N such that πN (E) has 1-
dimensional Hausdorff measure zero, the corresponding set E on which N vanishes
is removable for conformal mappings. For example, one can show that, if E is
contained in a continuum F satisfying H1

‖·‖2(F ) < ∞, πN (E) has 1-dimensional
Hausdorff measure zero for any admissible norm field N vanishing exactly on E.
For such compact sets, the strongest converse to Theorem 1.3 holds. That is, if any
admissible norm field N vanishing exactly on E is reciprocal, then E is removable
for conformal mappings.

The lower bound for p in Theorem 1.4 is sharp. Consider an arc E ⊂ R2 that is
bi-Lipschitz equivalent to ([0, 1] , |·|1/d) for some d ∈ (1, 2). Then E is a snowflake
arc of Hausdorff dimension d. It follows from [Sem96, Theorem 6.3] that the square
of the weight σd−1(x) = min

{
1, d‖·‖2(x,E)d−1

}
is a strong A∞-weight, as defined

in [Sem96, Definition 1.5], and hence the norm field Nd−1 is reciprocal. However,
the arc E is not removable for conformal mappings.

Theorems 1.3 and 1.4 show that reciprocal norm fields are almost characterized
by whether the set on which they vanish is removable for conformal mappings.
We now mention a few facts about removable sets for conformal mappings that are
known, many of them coming from an influential paper of Ahlfors–Beurling [AB50].
First, every compact set of positive Hausdorff 2-measure is non-removable. Second,
every compact set of zero Hausdorff 1-measure is removable. More intriguingly,
for Cantor sets E ⊂ R × {0} of positive Hausdorff 1-measure, both outcomes are
possible. In [AB50], Ahlfors and Beurling give examples of Cantor sets in R× {0}
of positive H1-measure that are removable for conformal maps, as well as such
Cantor sets that are non-removable. A similar example in the related context of
circle domain uniformization can be found as Theorem 11.1 of an early version of
a paper of Schramm [Sch95]. Next, by Theorem 10 in [AB50] and Proposition 3.3
in [KKR19], removable sets for conformal mappings are metrically removable: for
every ε > 0, each pair of points x, y ∈ R2 can be connected by a curve disjoint from
E\{x, y} that has length at most ‖x−y‖2+ε. See [HH08] and [KKR19] for more on
the topic of metric removability. Removable sets for conformal mappings are also
examples of the quasiextremal distance exceptional sets considered in [GM85] and
the related literature. Finally, an equivalent definition can be given by replacing
the word “conformal” with “quasiconformal” in the definition [You15, Prop. 4.7].
Thus the property of removability is invariant under quasiconformal mappings of
the complementary domain.

This should be compared with the notion of removable sets for bounded analytic
functions. The problem of characterizing such sets is known as Painlevé’s problem
and has received considerable attention, with a satisfactory resolution obtained by
Tolsa in [Tol03]. We note here that this is a stronger notion of removability: every
set that is removable for bounded analytic functions is removable for conformal
mappings. See Proposition 4.3 of [You15] for a proof. For example, a removable set
for bounded analytic functions must have Hausdorff dimension at most 1. Moreover,
according to David’s resolution of Vitushkin’s conjecture [Dav98], a compact set E
with finite Hausdorff 1-measure is removable for bounded analytic functions if and
only if it is purely 1-unrectifiable.
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Finally, we remark that the notion of uniformly disconnected sets provides a
further class of examples to which these results apply. In [Sem96], Semmes studies
metrics of the form dNp , where Np is as in Theorem 1.4, with the additional as-
sumption that the set E is uniformly disconnected, meaning that there exists ε > 0
with the property that, for any two distinct points x, y ∈ E, there is no sequence
of points x = x0, x1, . . . , xm = y in E satisfying ‖xj−1 − xj‖2 < ε‖x − y‖2 for
all j ∈ {1, . . . ,m}. He proves that for such an E and every p > 0, the square
of the weight σp(x) = min{1, d‖·‖2(x,E)p} is a strong A∞-weight and hence the
norm field Np in Theorem 1.4 is reciprocal. Therefore Theorem 1.4 implies that
uniformly disconnected Cantor sets are removable for conformal mappings. This
removability can alternatively be deduced in many ways from the existing litera-
ture. Note in particular that a uniformly disconnected set E can have Hausdorff
dimension arbitrarily close to 2.

1.4. Factorization of quasiconformal mappings. This section is motivated by
the following factorization problem. Consider a quasiconformal surface (X, d) and
corresponding isothermal parametrization f : Ω → X, where Ω is a smooth Rie-
mannian surface. Following [Iko21], a quasiconformal homeomorphism f : Ω → X
is isothermal if it is distortion-minimizing at almost every point in a suitable sense.
Roughly speaking, the pointwise distortion of f at x is the aspect ratio of the image
of a small ball centered at x. The existence of an isothermal parametrization for
every quasiconformal surface is established in [Iko21, Theorem 6.2]. See Section 2.5
for the precise definition of distortion and Section 7.1 for the definition of isothermal
map. We ask: can one find a metric surface (X̂, d̂) such that f factors as f = f̂ ◦P ,
where f̂ : X̂ → X is 1-quasiconformal and P : Ω → X̂ is bi-Lipschitz? In other
words, can one find a “conformal representative” for the space X within the class
of bi-Lipschitz surfaces?

If the metric is defined by a continuous reciprocal norm field of bounded distor-
tion, then such a factorization can always be found. Recall that, by the classical
uniformization theorem, for every domain Ω ⊂ R2 there exists a smooth Riemann-
ian norm field G = σ ‖·‖2 on Ω such that (Ω, dG) is complete and has Gaussian
curvature 0 or −1. We have the following result.

Proposition 1.5. Let Ω ⊂ R2 be a domain and N a reciprocal norm field with
distortion H. If N is continuous outside the set E = {x ∈ Ω : Nx = 0}, then there
exists a distance d̂ on Ω such that:

(i) The identity map P : (Ω, dG)→ (Ω, d̂) satisfies

(3) dG(x, y) ≤ d̂(P (x), P (y)) ≤ HdG(x, y)

for all x, y ∈ Ω.
(ii) The identity map ι̂ : (Ω, d̂)→ (Ω, dN ) is 1-quasiconformal.

If the identity map ι : Ω→ (Ω, dN ) is isothermal, then it has distortion at most√
2 [Iko21, Lemma 4.10], and so (3) holds with H =

√
2. The example of the

`∞-norm on R2 shows that the value H =
√

2 in (3) is sharp for the case of
general isothermal maps. Since every quasiconformal surface has an isothermal
parametrization, this raises the question of finding conditions on N that guarantee
that the conclusion of Proposition 1.5 holds with H =

√
2. In turn, this question

is related to the regularity of the Beltrami coefficient derived from distance ellipse
field corresponding to N and does not appear to have a straightforward answer.
We briefly address this issue in Section 7.3.

In general, the conclusion of Proposition 1.5 may fail if Nx is discontinuous
outside of E. In the final part of the paper, we present a lengthy construction
giving a negative answer to the above factorization question in general. In fact, we
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obtain the stronger conclusion that no quasiconformal map f̂ in such a factorization
can have distortion smaller than that of f .

Theorem 1.6. There is a metric d on R2 such that the identity map ι : (R2, ‖·‖2)→
(R2, d) is an isothermal quasiconformal homeomorphism, but ι does not factor as
ι = ι̂ ◦ P , where (X̂, d̂) is a metric surface, ι̂ : (X̂, d̂) → (R2, d) is quasiconformal
with distortion H(ι̂) <

√
2 and P : (R2, ‖ · ‖2)→ (X̂, d̂) is bi-Lipschitz.

The identity map ι in our construction has distortion H(ι) =
√

2, so the inequal-
ity H(ι̂) <

√
2 is sharp.

The metric d in Theorem 1.6 is defined via a lower semicontinuous norm field of
the form

Nx =

{
cx ‖·‖1 if x ∈ F
cx ‖·‖∞ if x /∈ F

for some measurable set F ⊂ R2 and measurable function x 7→ cx, where 0 ≤ cx ≤ 1
and cx vanishes at a single point. Note that this fits exactly into the construction
scheme of this paper, and therefore (R2, d) is a quasiconformal surface.

One might initially expect that the metric d̂ on R2 defined by

N̂x =

{
‖·‖1 if x ∈ F√

2 ‖·‖∞ if x /∈ F
with ι̂ and P the identity map on R2, or some variation on this, gives a factorization
satisfying the properties given in Theorem 1.6. Observe that ‖·‖2 ≤ N̂ ≤

√
2 ‖·‖2

everywhere, so the map P in this situation is bi-Lipschitz. However, the map ι̂

may fail to be 1-quasiconformal. The reason for this is that the norm field N̂
corresponding to F is typically not lower semicontinuous, in which case the metric
derivatives of P need not coincide with N̂x almost everywhere. Indeed, we prove
Theorem 1.6 by specifying explicitly a set F and coefficients cx for which this failure
of 1-quasiconformality occurs for the norm field N̂ defined above, and in fact for
any conformal rescaling of N̂ bi-Lipschitz equivalent to the Euclidean norm field.

The basic idea of our construction is to define a sequence of nested Cantor sets
Ki as the intersection of a collection of squares in the plane. This is done so that
the odd-indexed Cantor sets are formed from squares in the standard (i.e., non-
rotated) alignment, while the even-indexed Cantor sets are formed from squares
aligned diagonally. Next, the norm field on Ki \Ki+1 for odd values of i is defined
to be the supremum norm ‖·‖∞, scaled by a constant ci satisfying ci → 0 as i→∞,
while the norm field for even values of i is defined to be the ‖·‖1-norm, also scaled
by a constant c′i satisfying c′i → 0 as i → ∞. A consequence of the distortion
inequality for ι̂ is that the metric derivatives of P and ι cannot differ by more
than a fixed amount, up to rescaling. With a suitable choice of constants ci, c′i, the
alternating arrangement of the Cantor sets Ki then forces the metric derivatives of
P to be arbitrarily small at some points.

Lytchak–Wenger [LW18] and Creutz–Soultanis [CS20] study similar types of
factorizations for minimal disks or solutions to Plateau’s problem with metric space
target, though without trying to optimize the properties of P in the way that we
have proposed. Here, we simply remark that the map ι in our example is also an
energy-minimizing map (for the Reshetnyak energy) in the sense of these papers on
each closed disk. We refer the reader to the above papers for definitions of these
terms.

1.5. Outline. Our paper is organized as follows. Section 2 gives an overview of ba-
sic results and notation related to metric Sobolev spaces, quasiconformal mappings,
and removable sets. In Section 3, we give a detailed overview of the construction of
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metric spaces from a prescribed norm field under suitable assumptions. In Section 4,
we prove the first of the main results, Theorem 1.3, stating that an admissible norm
field is reciprocal if it vanishes exactly on a set that is removable for conformal map-
pings. In Section 5, we prove the partial converse, Theorem 1.4. Section 6 gives a
pair of examples of spaces constructed from conformal weights that each vanish on
a linear Cantor set of positive length, one of which is reciprocal and one of which is
not. This can be viewed as the borderline case. Finally, Section 7 gives the proof
of Proposition 1.5 as well as the construction for Theorem 1.6.

Acknowledgments. We are thankful to Alexander Lytchak, Kai Rajala, and Atte
Lohvansuu for discussions about this project and feedback on a draft of this paper.
We also thank Dimitrios Ntalampekos and Malik Younsi for discussions related to
removable sets for conformal mappings, and in particular for Malik Younsi bring-
ing the paper [AB50] to our attention. Finally, we thank Jarmo Jääskeläinen for
discussions related to the Beltrami equation.

2. Preliminaries

2.1. Notation. In this paper, we frequently consider several metrics in close prox-
imity to one another. For this reason, we will consistently use subscripts to denote
the metric being referred to. Let (X, d) be a metric space. The open ball centered
at a point x ∈ X of radius r > 0 with respect to the metric d is denoted by Bd(x, r).

The Euclidean metric is denoted by ‖·‖2. Thus, for example, we write B‖·‖2(x, r)
for an open ball with respect to this metric, and ds‖·‖2 for the Euclidean length
element.

We recall the definition of Hausdorff measure. Let (X, d) be a metric space. For
all p ≥ 0, the p-dimensional Hausdorff measure, or Hausdorff p-measure, is defined
by

HpX(A) = sup
δ>0

inf

{
α(p)

2p

∞∑

i=1

(diamAi)
p : A ⊂

∞⋃

i=1

Ai,diamAi < δ

}

for all sets A ⊂ X, where α(p) = π
p
2

(
Γ
(
p
2 + 1

))−1. The constant α(p) is chosen so
that HnRn coincides with the Lebesgue measure Ln for all positive integers.

If the space X is understood but not the metric d, then we use the notation Hpd
instead of HpX . The Hausdorff dimension of a set E ⊂ X is the infimal value of
p for which HpX(E) = 0 and is denoted by dimHd E. For the basics of Hausdorff
measure, see for example [AT04, Chapter 2].

Unless otherwise noted, in this paper a metric surface (X, d) is always equipped
with the Hausdorff 2-measure generated by the metric d. For example, the phrase al-
most every refers to the Hausdorff 2-measure. Similarly, an interval in R is equipped
with the Lebesgue measure L1.

A path is a continuous function from an interval into a metric space. A path in
X will typically be denoted by γ. The image of γ is denoted by |γ|. The length of
a path γ : [a, b]→ X is defined as

`d(γ) = sup

n∑

j=1

d(γ(ti−1), γ(ti)),

the supremum taken over all finite sequences a = t0 ≤ t1 ≤ · · · ≤ tn = b. A path is
rectifiable if it has finite length. A path is locally rectifiable if its restriction to any
compact subinterval is rectifiable.

The metric speed of a path γ : [a, b]→ X at the point t ∈ [a, b] is defined as

vγ(t) = lim
h→0

d(γ(t+ h), γ(t))

h
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whenever this limit exists. If γ is rectifiable, its metric speed exists at L1-almost
every t ∈ [a, b]; see Theorem 2.1 of [Dud07].

A rectifiable path γ : [a, b]→ X is absolutely continuous if for all a ≤ s ≤ t ≤ b,

d(γ(t), γ(s)) ≤
∫ t

s

vγ(u) dL1(u)

with vγ ∈ L1([a, b]) and L1 the Lebesgue measure on the real line. Equivalently, γ
is absolutely continuous if it maps sets of L1-measure zero to sets of H1

X -measure
zero in its image; see Section 3 of [Dud07].

A path γ̃ : [c, d]→ X is a reparametrization of γ if there exists a map ψ : [a, b]→
[c, d] that is surjective, non-decreasing, and continuous such that γ = γ̃ ◦ ψ. If ψ is
absolutely continuous, we say that γ̃ is an absolutely continuous reparametrization
of γ. Note that this is different from γ̃ itself being an absolutely continuous path.

Every rectifiable path γ has a reparametrization γ̃ : [0, `d(γ)]→ X such that the
metric speed of γ̃ equals one L1-almost everywhere. In this case, we write γs = γ̃,
and refer to γs as the unit speed parametrization of γ. See Chapter 5 of [HKST15]
for details.

If γ is rectifiable, the unit speed parametrization γs is 1-Lipschitz and hence
absolutely continuous [HKST15, Proposition 5.1.8].

Let γ be a rectifiable path. Then the path integral of a Borel function ρ : X →
[0,∞] over γ is

(4)
∫

γ

ρ ds =

∫ `d(γ)

0

ρ ◦ γs dL1,

where L1 is the Lebesgue measure on the real line.
If γ is absolutely continuous and γ̃ is an absolutely continuous reparametrization

of γ, the chain rule for metric speeds [Dud07, Theorem 3.16 and Remark 3.4] states
that

vγ = (vγ̃ ◦ ψ) · ψ′ ∈ L1([c, d]),

where the right-hand side is understood to be zero whenever the derivative ψ′ = 0
(even if vγ̃ ◦ ψ is not defined or is infinite at such a point).

Moreover, for absolutely continuous γ, the unit speed parametrization γs is an
absolutely continuous reparametrization of γ. Therefore (4) can be restated for
absolutely continuous γ : [a, b]→ X as follows:

∫

γ

ρ ds =

∫ b

a

(ρ ◦ γ) · vγ dL1.

Given a Borel set A ⊂ X, the length of a path γ : [a, b] → X in A is defined as∫
X
χA(x)#(γ−1(x)) dH1

X(x), where #(γ−1(x)) is the counting measure of γ−1(x).
This formula makes sense for paths that are not necessarily rectifiable; see Theorem
2.10.13 [Fed69]. If γ is rectifiable, the number coincides with the path integral of
χA over γ.

2.2. Metric Sobolev spaces. In this section, we give an overview of the theory
of Sobolev spaces in the metric space setting. We refer the reader to the book
[HKST15] for a comprehensive introduction to this topic. Throughout this section,
assume that (X, dX) and (Y, dY ) are metric surfaces.

The conformal modulus provides a basic way of measuring the size of a family
of paths. It is a conformal invariant in the Euclidean case, which accounts for both
its nomenclature and its usefulness. Let Γ be a family of paths in X. A Borel
function ρ : X → [0,∞] is admissible for Γ if the path integral

∫
γ
ρ ds ≥ 1 for all
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locally rectifiable paths γ ∈ Γ. The conformal modulus, or simply modulus, of Γ is

mod Γ = inf

∫

X

ρ2 dH2
X ,

where the infimum is taken over all admissible functions ρ for Γ.
If ρ is admissible for a path family Γ′ ⊂ Γ such that Γ \ Γ′ has modulus zero,

then ρ is said to be weakly admissible for Γ. If a property holds for every path
γ ∈ Γ except in a subfamily of modulus zero, then this property is said to hold on
almost every path in Γ. If mod Γ <∞, then there exists a weakly admissible Borel
function ρ ∈ L2(X) such that

mod Γ =

∫

X

ρ2 dH2
X .

Such a ρ is called a minimizer of Γ. Such a minimizer is unique H2
X -almost every-

where.
Let f : (X, dX) → (Y, dY ) be a mapping between metric surfaces X and Y . A

function g : X → [0,∞] is an upper gradient of f if

dY (f(x), f(y)) ≤
∫

γ

g ds

for every rectifiable path γ : [0, 1]→ X connecting x to y. The function g is a weak
upper gradient of f if the same holds for almost every rectifiable path.

The weak upper gradient g ∈ L2
loc(X) is minimal if it satisfies g ≤ g̃ almost

everywhere for all weak upper gradients g̃ ∈ L2
loc(X) of f . If f has a weak upper

gradient g ∈ L2
loc(X), then f has a minimal weak upper gradient, which we denote

by gf . The existence of gf follows from the fact that the weak upper gradients of f
form a lattice. This also implies that gf is unique up to measure zero; see Section
6 of [HKST15] and Section 3 of [Wil12] for details. In general, gf is only a weak
upper gradient.

Proposition 6.3.3 of [HKST15] and countable subadditivity of modulus (see also
Lemmas 3.2 and 3.3 of [Wil12]) establish that a Borel function ρ : X → [0,∞]
belonging to L2

loc(X) is a weak upper gradient of f if and only if for almost every
absolutely continuous path γ : [a, b] → X, the composition f ◦ γ is an absolutely
continuous path for which the metric speeds vf◦γ and vγ satisfy

(5) vf◦γ ≤ (ρ ◦ γ) · vγ

L1-almost everywhere on [a, b]. Since ρ ∈ L2
loc(X) the right-hand side of (5) is

integrable on its domain for almost every γ.
Let Z be a metric space such that H2

dZ
(Z) < ∞. Choose a point y ∈ Y , and

let dy = dY (·, y). The space L2(Z, Y ) is defined as the set of measurable mappings
f : Z → Y such that dy ◦ f is in L2(Z). One can check that this definition is
independent of the choice of y.

We define L2
loc(X,Y ) to consist of those measurable mappings f : X → Y for

which, for all x ∈ X, there is an open set U ⊂ X containing x such that f |U is in
L2(U, Y ).

The metric Sobolev space N1,2
loc (X,Y ) consists of those mappings f : X → Y in

L2
loc(X,Y ) that have a minimal weak upper gradient gf ∈ L2

loc(X).
For open U ⊂ X with H2

X(U) < ∞, we say that f ∈ N1,2(U, Y ) if f |U ∈
N1,2

loc (U, Y ) in such a way that gf |U ∈ L2(U) and for some y ∈ Y , fy(x) = dy ◦f |U ∈
L2(U).
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Next we define the Jacobian of f for continuous f : X → Y . The pullback measure
f∗H2

Y is defined for Borel sets A ⊂ X by the formula

f∗H2
Y (A) =

∫

Y

#(A ∩ f−1(y)) dH2
Y ,

where #(A ∩ f−1(y)) is the multiplicity function of f relative to A. The measure
f∗H2

Y can be defined equivalently using a suitable Carathéodory construction; see
[Fed69, 2.10.10]. In fact, f∗H2

Y is a Borel regular outer measure.
If the pullback measure f∗H2

Y is locally finite, the measure has a Lebesgue
decomposition f∗H2

Y = JfH2
X+µ⊥, where µ⊥ and H2

X are singular [Bog07, Section
3.1-3.2, Volume I]. The density Jf is called the Jacobian of f . The local finiteness
of f∗H2

Y and H2
X imply that Jf is locally integrable.

2.3. Seminorms. We introduce the terminology and notation we use for semi-
norms. Recall that a seminorm S on R2 is a function S : R2 → [0,∞) satisfying
the following conditions for all v, w ∈ R2 and λ ∈ R:

(i) (absolute homogeneity) S(λv) = |λ|S(v) whenever λ ∈ R and v ∈ R2;
(ii) (triangle inequality) S(v + w) ≤ S(v) + S(w).

The seminorm S is a norm if it has the additional property that S(v) = 0 only if
v = 0. The maximal stretching of S is

(6) L(S) = sup {S(v) : ‖v‖2 ≤ 1} .
The minimal stretching of S is

(7) ω(S) = inf {S(v) : ‖v‖2 ≥ 1} .
The Jacobian of the seminorm S is

J2(S) =
π

L2 ({v : S(v) ≤ 1}) .

Observe that J2(S) = 0 in the case that S is only a seminorm. The distortion of S
is

(8) H(S) =
L(S)

ω(S)

if ω(S) > 0 and H(S) = ∞ otherwise. The latter case occurs if S is a non-zero
seminorm that is not a norm. The outer dilatation and inner dilatation of S are
defined by, respectively,

KO(S) =
L(S)2

J2(S)
, KI(S) =

J2(S)

ω(S)2

if J2(S) > 0, and KO(S) = KI(S) =∞ otherwise. The maximal dilatation of S is
K(S) = max{KO(S),KI(S)}. Observe that KO(S) ≥ 1 and KI(S) ≥ 1.

The seminorm S induces a pseudometric dS on R2 by the formula dS(x, y) =
S(x − y). The identity map ιS : (R2, ‖·‖2) → (R2, dS) has the constant function
L(S) as its minimal weak upper gradient and J2(S) as its Jacobian. Its inverse ι−1

S

has the constant function ω(S)−1 as its minimal weak upper gradient.
The following lemma gives a relationship between the maximal dilatation and

distortion.

Lemma 2.1. The distortion H(S) and maximal dilatation K(S) of S satisfy
H(S) ≤ K(S) ≤ H(S)2.

Proof. If ω(S) = 0, then H(S) = K(S) = ∞. Otherwise, H(S) and K(S) are
both finite. Observe the relationship H(S)2 = KO(S)KI(S) ≤ K(S)2. On the
other hand, the relationships KO(S) ≥ 1 and KI(S) ≥ 1 imply respectively that
H(S)2 ≥ KI(S) and H(S)2 ≥ KO(S). We conclude that H(S)2 ≥ K(S). �
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2.4. Metric derivatives of Lipschitz mappings. Throughout this section, we
let Ω denote a domain in R2 and (X, d) denote a metric space. We refer to Sec-
tion 2.3 for basic terminology about seminorms.

Definition 2.2. Let f : (Ω, ‖ · ‖2)→ (X, d) be a Lipschitz map. For all x ∈ Ω and
v ∈ R2, the metric derivative of f at x in the direction v is

(9) Nf,x(v) = lim sup
t→0+

d(f(x), f(x+ tv))

t
.

A result by Ivanov [Iva08] states the following. Similar results are proved in
[Kir94, DCP90, DCP91, DCP95].

Theorem 2.3. Let f : (Ω, ‖ ·‖2)→ (X, d) be a Lipschitz map. There exists a Borel
set N0 ⊂ Ω of zero Lebesgue measure such that, for all x ∈ Ω \N0 and all v ∈ R2,
the limit superior in (9) is an actual limit, and v 7→ Nf,x(v) is a seminorm for every
x ∈ R2 \N0.

As a consequence of Theorem 2.3, the metric derivative of a Lipschitz map defines
a seminorm field on Ω.

Proposition 2.4. Let f : Ω→ X be a Lipschitz function and Nf its metric deriv-
ative. The maximal stretching x 7→ L(Nf (x)) is a minimal weak upper gradient of
f , and f satisfies the change of variables formula

(10)
∫

Ω

ρ(z)J2(Nf,z) dL2(z) =

∫

X

∫

f−1(x)

ρ(y)dH0(y) dH2
d(x)

for all Borel functions ρ : Ω→ [0,∞].

Proof. Theorem 2.3 implies that the metric derivative, as defined in Definition 2.2,
coincides with the metric derivative of Kirchheim [Kir94] L2-almost everywhere in
Ω. Thus the change of variables formula (10) follows from [Kir94, Corollary 8]. The
statement that L(Nf ) is a minimal weak upper gradient of f is proved in [LW17,
Section 4]. �

The metric differential can be used to compute the metric speed of an absolutely
continuous path.

Lemma 2.5. If γ : [a, b] → Ω is an absolutely continuous path, then for almost
every t ∈ [a, b], the metric speed vf◦γ(t) of f ◦ γ exists and satisfies

vf◦γ(t) = Nf ◦Dγ(t),

where Dγ(t) is the derivative of γ at t.

Proof. It follows from [Iva08, Proposition 2.7] that `d(f ◦ γ) = `Nf (γ) for ev-
ery Lipschitz path γ : [a, b] → R2. Since every absolutely continuous path has
a Lipschitz parametrization, the same result holds for absolutely continuous paths
γ : [a, b] → R2. The lemma now follows from the Lebesgue differentiation theo-
rem. �

2.5. Quasiconformal mappings. Recall the geometric definition of quasiconfor-
mal mapping given in (1). A result of Williams states that this geometric definition
is equivalent to an analytic definition based on metric Sobolev spaces. We state
the two-dimensional case of this result, or rather a generalization to the case of
continuous monotone maps. Recall that a mapping f : X → Y is monotone if the
preimage of every point y ∈ Y is a connected and compact subset of X.
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Theorem 2.6 (cf. [Wil12]). Let X and Y be metric surfaces with locally finite
Hausdorff 2-measure. Let f : X → Y be continuous and monotone, and suppose
that the pullback measure f∗H2

Y is locally finite. The following are equivalent for
the same constant K ≥ 1:

(i) mod Γ ≤ K mod fΓ for all path families Γ in X.
(ii) f ∈ N1,2

loc (X,Y ) and satisfies

g2
f (x) ≤ KJf (x)

for H2
X -almost every x ∈ X.

Theorem 2.6 can be established using the original proof in [Wil12] with slight
modifications which deal with the multiplicity of f . This is omitted here. A similar
result can be found as Proposition 3.5 of [LW20].

The outer dilatation of f is the smallest constant K ≥ 1 for which the modulus
inequality mod Γ ≤ K mod fΓ holds for all Γ in X. The inner dilatation of f is
the smallest constant K ≥ 1 for which mod fΓ ≤ K mod Γ holds for all Γ in X.
These are denoted respectively by KO(f) and KI(f). Thus a quasiconformal map
is a homeomorphism with finite outer and inner dilatation.

Definition 2.7. The pointwise distortion of a quasiconformal homeomorphism
f : X → Y at x ∈ X is

Hf (x) =

{
gf (x)gf−1(f(x)) if gf (x), gf−1(f(x)) ∈ (0,∞)

1 otherwise
.

A quasiconformal homeomorphism f satisfies condition (ii) in Theorem 2.6, and
its inverse f−1 satisfies an analogous condition. It follows that the map x 7→ Hf (x)
is H2

X -a.e. independent of the representatives of gf and gf−1 . The smallest H ≥ 1
for which Hf (x) ≤ H for H2

X -a.e. x ∈ X is called the distortion of f . In particular,
H ≤

√
KO(f)KI(f).

Consider now a quasiconformal map f : Ω ⊂ R2 → X that is also Lipschitz. Then
the equalities gf (x) = L(Nf,x) and gf−1 ◦ f(x) = (ω(Nf,x))−1 hold for L2-almost
every x ∈ Ω [Iko21, Lemmas 4.4 and 4.7]. Consequently, we have the equality
Hf (x) = H(Nf,x) for L2-almost every x ∈ Ω.

In general, a quasiconformal map f : Ω ⊂ R2 → X must satisfy Lusin’s Condition
(N−1): for every Borel set E ⊂ Ω of positive Lebesgue measure, f(E) has positive
Hausdorff 2-measure. This is essentially proved in Remark 8.3 or Section 17 of
[Raj17]. On the other hand, f need not satisfy Lusin’s Condition (N): for every
Borel set E ⊂ Ω of zero Lebesgue measure, f(E) has zero Hausdorff 2-measure. An
example of this is given as Proposition 17.1 of [Raj17].

A uniformization theorem for quasiconformal mappings was proved by Rajala
based on the notion of reciprocality [Raj17]. Let X be a metric surface. For a set
G ⊂ X and disjoint sets F1, F2 ⊂ G, let Γ(F1, F2;G) denote the family of paths
whose images are contained in G that start from F1 and end in F2. A quadrilateral
is a set Q homeomorphic to [0, 1]2 with boundary consisting of four nonoverlapping
boundary arcs, labelled ξ1, ξ2, ξ3, ξ4 in cyclic order.

Definition 2.8. A metric surface X is reciprocal if there exists a constant κ ≥ 1
such that

κ−1 ≤ mod Γ (ξ1, ξ3;Q) mod Γ (ξ2, ξ4;Q) ≤ κ(11)

for every quadrilateral Q ⊂ X, and

(12) lim
r→0+

mod Γ
(
B(x, r), X \B(x,R);B(x,R)

)
= 0

for all x ∈ X and R > 0 such that X \B(x,R) 6= ∅.
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We say that a reciprocal surface is κ-reciprocal if (11) holds for the constant
κ. Note that, for all metric surfaces, the left inequality in (11) is satisfied for a
universal constant κ̃ > 0 [RR19].

Theorem 1.4 in [Raj17] states that a metric surface X homeomorphic to R2 is
reciprocal if and only if there exists a quasiconformal homeomorphism onto the
disk or the Euclidean plane. This result is extended to arbitrary metric surfaces in
[Iko21]. More precisely, Theorem 1.2 in [Iko21] implies that a metric surface X is
locally reciprocal (that is, every point in X has a neighborhood that is reciprocal) if
and only if X is quasiconformally equivalent to a smooth Riemannian 2-manifold.
In fact, Theorem 1.3 in [Iko21] proves that such an X is (π/2)-quasiconformal
equivalent to a Riemannian surface. In particular, a metric surface that is locally
reciprocal is also globally reciprocal.

2.6. Removable sets for conformal mappings. We collect some background
on removable sets for conformal mappings. Recall from the introduction that the
compact set E ⊂ R2 is removable for conformal mappings if every conformal em-
bedding f : R2 \ E → R̂2 extends to a conformal mapping F : R̂2 → R̂2. Thus f is
the restriction of a Möbius transformation.

This notion exists under several names, including sets of absolute area zero and
negligible sets for extremal distance. This nomenclature reflects the following char-
acterization.

Proposition 2.9. Let E ⊂ R2 be compact. The following are equivalent.

(i) E is removable for conformal mappings.
(ii) E has absolute area zero: for every conformal embedding f : R2 \E → R̂2,

the complementary set R̂2 \ f(R2 \ E) has Lebesgue measure zero.
(iii) E is negligible for modulus: for every domain Ω ⊂ R2 and pair of disjoint

compact sets F,G ⊂ Ω \ E, mod Γ(F,G; Ω) = mod Γ(F,G; Ω \ E).
(iv) Any quasiconformal embedding f : R2 \ E → R̂2 has an extension to a

quasiconformal mapping F : R̂2 → R̂2.
(v) For any open set U ⊂ R2, every quasiconformal mapping on U \E extends

quasiconformally to the whole open set U .

The equivalence of (i), (ii) and (iii) is proved in [AB50]. The equivalence of (i)
and (iv) is a consequence of the measurable Riemann mapping theorem. See Propo-
sition 4.7 in [You15] for a proof. The equivalence of (i) and (v) can also be found
in [You15] as Proposition 4.6. We see from (iv) and (v) that removability for con-
formal mappings is a local property and a quasiconformal invariant. If E contains
a nontrivial connected component E0, then there is a non-Möbius conformal map
f : R2 \ E0 → R2 such that R2 \ f(R2 \ E0) is the closed unit disk. Thus Property
(ii) implies that a removable set for conformal mappings is totally disconnected.

Property (iii) in Proposition 2.9 indicates the connection between quasiconformal
uniformization and removable sets. Observe that for each triple F , G, and Ω,
Γ(F,G; Ω \ E) is a subset of Γ(F,G; Ω) and thus satisfies mod Γ(F,G; Ω \ E) ≤
mod Γ(F,G; Ω). In contrast, the metric space constructions in our paper collapse
a domain at the set E and hence increase the modulus of a path family, up to a
factor related to the dilatation bound of the norm field. Thus Theorem 1.3 and
Theorem 1.4 can be summarized roughly by saying that removing the set E does
not decrease the modulus of any path family if and only if collapsing the plane at E
does not increase the modulus of any path family.
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3. Constructing a metric from a norm field

In this section, we give a description of the metric spaces considered in this paper
and develop their basic properties. These spaces are constructed from measurable
Finsler structures satisfying additional assumptions. The precise definition is given
in Section 3.1.

There is a vast literature on Riemannian and Finsler geometry, typically requiring
smoothness or at least continuity of the Finsler structure. The idea of constructing
metrics from Finsler structures with less regularity has been considered by various
previous authors, and so the material in this section is more-or-less standard. In
Section 3.2, we include a brief comparison with the existing literature.

We consider here seminorm fields N such that either Nx is a norm or Nx = 0
for all x ∈ Ω. Recall from the introduction that, slightly abusing terminology, we
use the term norm field to refer to an object of this type. Since a vector v ∈ R2

often comes with an implicit basepoint x, we will sometimes write N(v) in place of
Nx(v), such as in the expression N ◦Dγ.

3.1. Definition of the metric. Let Ω ⊂ R2 be a domain.

Definition 3.1. A norm field N : Ω × R2 → [0,∞) is admissible if it satisfies the
following:

(i) (lower semicontinuous) For all vectors v ∈ R2 and points x ∈ Ω, we have
Nx(v) ≤ lim infy→xNy(v).

(ii) (locally bounded) For all x ∈ Ω, there is a neighborhood U of x and M > 0
such that L(Ny) ≤M for all y ∈ U .

(iii) (locally bounded distortion) For all x ∈ Ω, there is a neighborhood U of x
and H > 0 such that L(Ny) ≤ Hω(Ny)) for all y ∈ U .

(iv) (nonseparating) The set E = {x ∈ Ω : Nx = 0} is compact and Ω \ E is
connected.

An immediate consequence of having locally bounded distortion is that Nx(v) =
0 for some v ∈ R2 \ {0} if and only if Nx is identically zero.

We use the norm field N to measure the length of an absolutely continuous path
γ : [a, b]→ Ω in the following way. We define the N -length of γ to be

`N (γ) =

∫ b

a

N ◦Dγ(t) dt,

where Dγ : [a, b]→ Ω× R2 is a Borel representative of the differential of γ.

Definition 3.2. Let N be an admissible seminorm field and x, y ∈ Ω. The N -
distance between x and y is defined as

dN (x, y) = inf `N (γ),

where the infimum is taken over absolutely continuous paths γ joining x to y in Ω.

The function dN is locally finite and satisfies the triangle inequality, but it may
happen that dN (x, y) = 0 for distinct points x, y ∈ Ω. Thus, in general, dN is only
a pseudodistance. Let EN be the partition of Ω into equivalence classes of points,
where x, y ∈ Ω belong to the same equivalence class if dN (x, y) = 0. This yields
the quotient space Ω/EN and the natural quotient map πN : Ω→ Ω/EN . The space
Ω/EN comes equipped with the metric that is the pushforward of dN under πN ,
which we denote by d̃N .

A consequence of the local boundedness of N is that the quotient map πN is
locally Lipschitz. In particular, the results described in Section 2.4 apply to the
map πN .
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3.2. Remarks on definition of admissible norm fields. We offer a few remarks
about Definition 3.1 and give a comparison to the previous literature.

The lower semicontinuity assumption guarantees that the metric tangents of
Ω/EN coincide with N almost everywhere. This implies, for example, that two
conformally equivalent norm fields generate metrics that are 1-quasiconformally
equivalent. In general, the metric tangents are not so well-behaved. For example,
let F ⊂ [0, 1] be a Cantor set of positive linear measure, and let E = F × F ⊂ R2.
The norm field N defined by

Nx =

{
2‖ · ‖∞ if x ∈ E
‖ · ‖1 if x /∈ E

generates the same metric as the norm field ‖ · ‖1, despite the fact that they differ
on a positive measure set. Indeed, the inequality ‖x− y‖1 ≤ dN (x, y) is immediate
for all x, y ∈ R2, since ‖ · ‖1 ≤ 2‖ · ‖∞. On the other hand, for all x, y ∈ R2 \ E,
there is an `1-geodesic from x to y lying in R2 \ E. Thus dN (x, y) ≤ ‖x − y‖1 for
such x, y. Since E has empty interior, we obtain the inequality dN (x, y) ≤ ‖x−y‖1
for all x, y ∈ R2. The lower semicontinuity assumption allows us to avoid this type
of behaviour; see Lemma 3.6 below.

The fact that E = {x ∈ Ω: Nx = 0} is non-separating guarantees that the quo-
tient space is homeomorphic to Ω (Corollary 3.9). For example, if E is the Euclidean
unit circle and N = χR2\E ‖·‖2, the resulting quotient space is not a 2-manifold.

Now we discuss some of the related literature on non-smooth Finsler metrics.
Perhaps the first investigations into this topic were carried out by Busemann–
Mayer in [BM41]. Beginning in the 1940s, the Russian school led by Alexandrov
developed a theory of surfaces of bounded curvature, also now known as Alexandrov
surfaces, as a generalization of two-dimensional Riemannian geometry. See [AZ67]
and [Res93] for an overview.

Finsler metrics on Lipschitz manifolds were systematically studied by De Cecco–
Palmieri in the series of papers [DCP88, DCP90, DCP91, DCP95]. Note that they
take a different approach to defining the distance dN from a norm field N . The
idea is to make the distance more robust by making the definition insensitive to
changes in N on a set of measure zero. In particular, the norm field N need only
be defined on a full measure subset. This is achieved as follows. For a set F ⊂ R2

of measure zero, let ΓF be the family of absolutely continuous paths that intersect
F in a set of length zero. Then one defines the metric dN,F as in Definition 3.2
but restricting to paths in ΓF . Next one defines DN (x, y) = sup dN,F (x, y), the
supremum taken over all measure zero sets F . This is called the intrinsic distance
in [DCP95, GPP06] and essential metric in [AHPCS18] and further investigated in
[CS20]. Observe that if N is continuous, then the essential metric coincides with
the metric considered in this paper. However, we do not take this approach, since
the norm fields we have in mind typically vanish on a set of measure zero, and we
prefer the additional flexibility of only requiring N to be lower semicontinuous.

3.3. Properties of length. In the remainder of this section, we establish prop-
erties of admissible norm fields and their corresponding metric. Our first lemma
states that the property of lower semicontinuity of N in each direction v can be
promoted to lower semicontinuity at a point in all directions uniformly.

Lemma 3.3. Let N be an admissible norm field and x ∈ Ω. For every ε > 0, there
exists r > 0 such that

Ny(v) ≥ (1− ε)Nx(v).

for all y ∈ B(x, r) and v ∈ R2.
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Proof. If Nx is the zero seminorm, then the conclusion follows immediately. Thus
we may assume that Nx is a norm. By the positive homogeneity of N , we need
only consider vectors v ∈ S1. Let ε > 0 and let δ = εω(Nx), so that Nx(v) − δ ≥
(1−ε)Nx(v) for all v ∈ R2. Thus it suffices to show that there exists a radius r > 0
such that

Ny(v) ≥ Nx(v)− δ
for all y ∈ B(x, r) and v ∈ S1.

Assume to the contrary that no such r exists. Then there exist sequences (yn) ⊂
Ω and (vn) ⊂ S1 for which

(13) Nyn(vn) < Nx(vn)− δ
for all n ∈ N. By passing to a subsequence, we have that vn converges to some
vector v ∈ S1.

Let M > 0 be such that L(Ny) ≤ M for all y in a neighborhood of x. Then for
every sufficiently large n ∈ N,

Nx(vn)−M ‖v − vn‖2 ≤ Nx(v)

and

Nyn(v) ≤ Nyn(vn) +M ‖v − vn‖2 .
Moreover, the lower semicontinuity of N implies that

Nx(v)− δ

2
≤ Nyn(v)

for all sufficiently large n ∈ N. Combining these inequalities yields

Nx(vn)−
(

2M ‖v − vn‖2 +
δ

2

)
≤ Nyn(vn).

Let n be sufficiently large so that ‖v − vn‖2 < δ(4M)−1. Then the preceding
inequality contradicts (13), and the result follows. �

The next lemma shows that the metric dN is locally well-behaved outside of the
set E.

Lemma 3.4. Let N be an admissible norm field. For all x ∈ Ω \ E, there exists
r > 0 such that B(x, r) ⊂ Ω \ E and the quotient map πN is bi-Lipschitz in the
neighborhood B(x, r).

Proof. We let σ(x) = ω(Nx) denote the minimal stretching of N . Lemma 3.3
implies that σ is lower semicontinuous. Also σ(x) = 0 if and only if Nx is not a
norm.

Let x ∈ Ω \ E. Let R > 0 be such that the closed ball B(x,R) is contained in
Ω \ E and satisfies σ(z) ≥ σ(x)/2 for all z ∈ B(x,R). Such an R > 0 exists by
the lower semicontinuity of the map z 7→ σ(z). Moreover, the local boundedness
of N implies that there exists M > 0 such that the maximal stretching L(Nz) is
bounded from above by M for all z ∈ B(x,R). We conclude that

σ(x)

2
‖v‖2 ≤ Nz(v) ≤M ‖v‖2

for all z ∈ B(x,R) and all v ∈ R2.
Let r = R/2. We claim that

σ(x) ‖y − z‖2
4

≤ dN (y, z) ≤M ‖y − z‖2
for all y, z ∈ B(x, r). Clearly, the line segment from y to z has N -length at most
M ‖y − z‖2. For the lower bound, consider an arbitrary absolutely continuous



18 TONI IKONEN AND MATTHEW ROMNEY

path γ from y to z. If |γ| ⊂ B(x,R), then we have the lower bound `N (γ) ≥
σ(x) ‖y − z‖2 /2. If |γ| is not contained in B(x,R), then its length is at least

σ(x)(R− r) =
σ(x)R

2
≥ σ(x) ‖y − z‖2

4
.

Since our path is arbitrary, we obtain dN (y, z) ≥ σ(x) ‖y − z‖2 /4. We conclude
that dN is bi-Lipschitz equivalent to the Euclidean distance on B(x, r). �

Lemma 3.5. For L2-almost every x ∈ Ω, the metric derivative NπN of πN at x
satisfies

NπN ,x ≤ Nx.
Moreover, for every x ∈ Ω,

Nx ≤ NπN ,x .

In particular, the metric derivative NπN equals N L2-almost everywhere in x ∈ Ω.

Proof. First, we show that the upper bound NπN ,x ≤ Nx holds L2-almost every-
where in Ω. Consider a fixed v ∈ R2 \ {0}. The local boundedness of N implies
that the function x 7→ Nx(v) is locally integrable. Consider a rectangle R ⊂ Ω with
one side parallel to v. There is a family of parallel line segments γt : [0, h0] → R,
γt(s) = xt + vs, that foliate R. Observe that for all t and s, Dγt(s) = v. The
definition of dN implies that

NπN ,γt(s)(v) ≤ lim sup
h→0+

1

h

∫

[s,s+h]

Nγt(a)(v) dL1(a).

According to Lebesgue’s differentiation theorem, the lim sup on the right-hand side
equals Nγt(s)(v) for L1-almost every s ∈ [0, h0]. Fubini’s theorem implies that

NπN ,x(v) ≤ Nx(v)

holds L2-almost everywhere in R. Since R is arbitrary, the same conclusion holds
for almost every point in Ω. The first inequality follows.

Next, we show that the inequality Nx ≤ NπN ,x holds for all x ∈ Ω. In the case
that x ∈ E, the conclusion is immediate since then Nx = 0. We consider now the
case that x ∈ Ω \ E. Let v ∈ R2 \ {0} and let ε > 0.

Let r > 0 be such that the conclusions of Lemma 3.3 and Lemma 3.4 hold for
the point x and the given value of ε. In particular, Lemma 3.4 implies that there
exists α ≥ 1 such that

α−1dN (y, z) ≤ ‖y − z‖2 ≤ αdN (y, z)

for all y, z ∈ B(x, r). Moreover, the local boundedness of N implies that there
exists M > 0 such that the maximal stretching L(Ny) ≤M for all y ∈ B(x, r). Let

t0 =
1

‖v‖2
r

2α
min

{
1

α
,

1

εM

}
.

For all t ∈ (0, t0), consider an absolutely continuous path γt : [0, 1] → Ω joining x
to x+ tv that satisfies

(14)
∫ 1

0

N ◦Dγt dL1 ≤ dN (x, x+ tv) + εtNx(v).

The right-hand side of (14) is bounded above by αt ‖v‖2 + εMt ‖v‖2 < r/α. In
particular, this implies that

(15) |γt| ⊂ B‖·‖(x, r).
Next, observe that

(16) tNx(v) = Nx(tv) ≤M‖tv‖2 ≤ αMdN (x, x+ tv).
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Applying now the conclusion of Lemma 3.3 along γt, which is allowed due to (15),
we have

(17) (1− ε)Nx(Dγt(s)) ≤ N ◦Dγt(s),

for almost every s ∈ [0, 1]. Note that the norm field N on the left-hand side has a
fixed basepoint.

Since straight line segments are geodesics with respect to the norm Nx, by inte-
grating both sides of (17) and applying (14) and (16), we obtain

(18) (1− ε)Nx(tv) ≤ (1 + εαM)dN (x, x+ tv).

We divide both sides of (18) by t and let t→ 0. We have

(1− ε)Nx(v) ≤ (1 + εαM) lim inf
t→0

dN (x, x+ tv)

t
.

The lim inf on the right-hand side is bounded from above by the metric derivative
NπN ,x(v). The result follows by letting ε→ 0. �

Lemma 3.6. For every Borel function ρ : Ω/EN → [0,∞], we have the change of
variables formula

∫

Ω

(ρ ◦ πN ) · J2(N) dL2 =

∫

Ω/EN
ρ dH2

d̃N
.

Proof. It follows from Lemma 3.5 that the metric derivative of πN equals N L2-
almost everywhere. The change of variables formula Proposition 2.4 implies that
H2
d̃N

(πN (E)) = 0. The fact that πN is injective in the complement of E implies
that the multiplicity term from Proposition 2.4 can be omitted. �

Lemma 3.7. For every absolutely continuous path γ in Ω, `N (γ) = `dN (πN ◦ γ).
In particular, the equality

(19) vπN◦γ = N ◦Dγ

holds almost everywhere in the domain of γ.

Proof. An immediate consequence of the definitions is that `d̃N (πN ◦ γ) ≤ `N (γ)
for every absolutely continuous γ in Ω. For the other direction, let L denote the
NπN -length of γ:

L =

∫

I

NπN ◦Dγ(t) dL1(t).

Since N(x) ≤ NπN (x) for all x ∈ Ω by Lemma 3.5, we see that `N (γ) ≤ L. By
Lemma 2.5, the equality L = `d̃N (πN ◦γ) holds for all absolutely continuous γ. The
equality `N (γ) = `d̃N (πN ◦ γ) now follows. The metric speed identity (19) follows
from the Lebesgue differentiation theorem. �

As a consequence of the previous lemma, whenever γ : I → Ω is an absolutely
continuous path, we have the integral formula

∫

πN◦γ
ρ dsN =

∫

I

(ρ ◦ πN )(N ◦Dγ) dL1

for all Borel measurable functions ρ : Ω/EN → [0,∞].
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3.4. The quotient map.

Proposition 3.8. The quotient map πN : Ω → Ω/EN is locally Lipschitz, locally
bi-Lipschitz in the complement of E, and its restriction to Ω \ E is injective.

Moreover, the map πN is closed and, for all x ∈ πN (E), the preimage π−1
N (x) is

a connected and compact subset of E.

Proof. We already proved in Lemma 3.4 that πN is locally bi-Lipschitz outside of
E. Moreover, since N is locally bounded, πN is locally Lipschitz at all points in Ω.

Next, let x ∈ Ω \E and U ⊂ Ω \E be a neighborhood of x such that πN |U is bi-
Lipschitz. The bi-Lipschitz property implies that dN (x, y) > 0 for all y ∈ U . Next,
let r > 0 be small enough so that B‖·‖(x, r) ⊂ U , and let c = inf{dN (x, y) : y ∈
S‖·‖(x, r)} > 0. If y ∈ Ω \ U , then any path from x to y must intersect S‖·‖(x, r),
which gives dN (x, y) ≥ c > 0. We conclude that πN is injective in the complement
of E.

Next, we prove that π−1
N (x̃) is a connected, compact subset of E for all x̃ ∈

πN (E). Let x ∈ π−1
N (x̃) and let K be the component of E containing x.

Let γ be a closed Jordan path in Ω \ E that separates K and the boundary of
∂Ω. See [Why64, Section III.3] for the existence of such a path γ. Let U be the
complementary component of |γ| containing K and c = inf

{
dN (x, z) : z ∈ Ω \ U

}
.

The image |γ| has a small neighborhood V compactly contained in Ω \ E. Every
path joining the point x to Ω \ U must pass through V . The lower semicontinuity
of N implies that N ≥ α ‖·‖2 in V for some α > 0 and hence that c > 0.

Let y ∈ π−1
N (x̃). Let (γn) be a sequence of Lipschitz paths joining x to y satisfying

`N (γn) ≤ 2−nc

for all n ∈ N. Observe that the image of each path γn is contained in U . Moreover,
for every zn ∈ |γn|, we have that dN (x, zn) ≤ 2−nc. This implies that a subsequence
of the sets (|γn|) converges with respect to the Hausdorff distance to a connected
subset C of π−1

N (x̃) ∩ U . This is a consequence of general properties of Hausdorff
convergence in metric spaces; see Proposition 4.4.14 and Theorems 4.4.15 and 4.4.17
in [AT04]. Observe that, for a given point z ∈ Ω \K, the Jordan path γ above can
be chosen so that z ∈ Ω \U . Therefore, the limit continuum C does not contain z.
It follows that C is a subset of K. Since y ∈ π−1

N (x̃) is arbitrary, we conclude that
π−1
N (x̃) is a connected subset of K. Note that it is not necessarily the case that
K = π−1

N (x̃).
The final step is to show that πN is closed. Let F ⊂ Ω be a closed set and let x̃

be a limit point of πN (F ). Since π−1
N (x̃) is a singleton or contained in a component

of E, there is a Jordan domain U ⊂ Ω such that ∂U is contained in Ω \ E and
separates π−1

N (x̃) and ∂Ω. Arguing as in the first part of the proof, we deduce that
there is a constant c > 0 such that dN (π−1

N (x̃), z) ≥ c for all z ∈ Ω\U . This implies
that x̃ is a limit point of πN (F ∩ U). Let (x̃j) be a sequence in πN (F ∩ U) with
limit x̃. Let (yj) be a sequence in F ∩ U such that πN (yj) = x̃j . The compactness
of U implies that there is a subsequence (yjk) that converges to a point y ∈ F .
Since πN |U is Lipschitz, it follows that (xjk) converges to πN (y), and moreover
that x̃ = πN (y). We conclude that x̃ ∈ πN (F ), and hence that πN (F ) is closed. �

Corollary 3.9. The space Ω/EN is homeomorphic to Ω.

Proof. By Proposition 3.8, πN is a closed and monotone map. Thus each element of
the decomposition EN is a planar continuum. Since the components of E are non-
separating, so are the elements of EN . It follows now from the classical theorem
of Moore that Ω/EN is homeomorphic to Ω. See, for instance, Theorem 25.1 in
[Dav86]. �
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Next we study the analytic properties of πN . A consequence of Proposition 2.4
and Lemma 3.5 is that x 7→ L(Nx) is a minimal weak upper gradient of πN . The
following lemma identifies the minimal weak upper gradient of the inverse of πN .

Lemma 3.10. If U ⊂ Ω is an open set such that πN |U is injective and its inverse
h is an element of N1,2

loc (πN (U),R2), the function

g =

(
1

ω(N)
χU\E

)
◦ h

is a minimal weak upper gradient of h.

We use the convention 1
0 · 0 = 0 in Lemma 3.10.

Proof. We show that the function g as in the claim is a weak upper gradient of h.
First, the change of variables formula Lemma 3.6 implies that H2

d̃N
(πN (E)) = 0.

Therefore the paths that have positive d̃N -length on πN (E) have zero modulus.
Moreover, since h is an element of N1,2

loc (πN (U),R2), hmaps almost every absolutely
continuous path in πN (U) to an absolutely continuous path in U . Thus it suffices
to check the upper gradient inequality for a path γ̃ : [0, 1]→ πN (U) that intersects
πN (E) in a set of d̃N -length zero and along which h is absolutely continuous.

Let γ̃ : [0, 1] → πN (U) be such a path, and let x = γ̃(0) and y = γ̃(1). Let
γ = h ◦ γ̃. Note that the absolute continuity of h along γ̃ implies that γ intersects
E in a set of Euclidean length zero. Therefore, by reparametrizing, we can assume
that the set J = γ−1(Ω \ E) has full length in [0, 1].

By Lemma 2.5, the metric speed identity vγ̃ = N ◦ Dγ holds L1-almost every-
where for γ. Also, for almost every t ∈ [0, 1] \ γ−1(E),

(20) vγ(t) = ‖Dγ(t)‖2 ≤
1

ω(Nγ(t))
N ◦Dγ(t) =

1

ω(Nγ(t))
vγ̃(t),

where ω(Nγ(t)) is the minimal stretching of N at γ(t). Since γ−1(E) has zero
measure, we conclude from (20) that for almost every t ∈ [0, 1],

(21) vγ(t) ≤
(
χU\E
ω(N)

◦ γ(t)

)
· vγ̃(t).

The right-hand side in (21) equals g ◦ (πN ◦ γ(t))vγ̃(t). Therefore, integrating both
sides of (21) implies that

‖h(x)− h(y)‖2 ≤
∫

γ̃

g dsd̃N .

The local L2-integrability of g follows from the fact that N has locally bounded
distortion (Lemma 2.1) and the change of variables formula (Lemma 3.6).

We are left to check that g is a minimal weak upper gradient. Let ρ ∈ L2
loc(πN (U))

be a weak upper gradient of h. We want to show that g(x) ≤ ρ(x) for H2
dN

-almost
every x ∈ πN (U). The set πN (E) is negligible, so it is sufficient to check this in the
complement of πN (E). As h is locally bi-Lipschitz in the complement of πN (E), it
suffices to check that

(22) g ◦ πN (x) = sup
v∈S1

1

Nx(v)
≤ ρ ◦ πN (x)

L2-almost every x ∈ U \ E.
Consider a square R ⊂ U \ E with center point x0 ∈ U and the accompanying

foliation given by
γt(s) = x0 + sv + tw,

where v, w ∈ R2 are orthogonal vectors and s, t ∈ [−1, 1].
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The metric speed identity vπN◦γ = N ◦Dγ implies that

vγt(s) = ‖v‖2 ≤ ρ ◦ (πN ◦ γt(s)) ·Nγt(s)(v)

holds almost everywhere along the domain of γt for almost every t. Fubini’s theorem
implies that

‖v‖2 ≤ ρ ◦ πN (x) ·Nx(v)

holds for L2-almost every x ∈ R. Equivalently,

1 ≤ ρ ◦ πN (x) ·Nx
(

v

‖v‖2

)

for L2-almost every x ∈ R. We can cover U \E by squares whose sides are parallel
to v and w, so we deduce that

(23)
1

Nx

(
v
‖v‖2

) ≤ ρ ◦ πN (x)

for L2-almost every x ∈ U \ E.
Let D be a countable dense subset of S1. We have shown that, for L2-almost

every x ∈ U \E, (23) holds for every v ∈ D. Consequently, (22) holds for L2-almost
every x ∈ U \ E. �

3.5. Local quasiconformality. Let U be a subdomain of Ω such that U ⊂ Ω
is compact. Since the norm field N has locally bounded distortion, there exists
K(U) <∞ such that

L(N)2 ≤ K(U)J2(N)

for the maximal stretching L(N) and the Jacobian J2(N). Recall that L(N) is a
weak upper gradient of πN , J2(N) is the Jacobian of πN , and that the pullback
measure π∗NH2

d̃N
is locally finite. Thus Theorem 2.6 implies the following.

Proposition 3.11. For every path family Γ in U , we have that

mod Γ ≤ K(U) modπNΓ.

If (Ω/EN , d̃N ) is reciprocal, then it admits some quasiconformal parametrization
from a domain in Euclidean space. We show here that the map πN itself is a
quasiconformal parametrization, at least locally.

Proposition 3.12. The metric surface (Ω/EN , d̃N ) is reciprocal if and only if πN
is a homeomorphism that is locally quasiconformal.

Here, a map ψ : X → Y is locally quasiconformal if every point x ∈ X has a
neighborhood U such that the restriction of ψ to U is K-quasiconformal for some
K ≥ 1, where K is allowed to depend on x.

Proof. If πN is a locally quasiconformal homeomorphism, every point in Y =

(Ω/EN , d̃N ) has a neighborhood that is reciprocal. By Theorem 1.2 of [Iko21],
this implies that Y is reciprocal.

Conversely, suppose that Y is reciprocal. It suffices to fix an arbitrary quadri-
lateral Q ⊂ Ω with E ∩ ∂Q = ∅ and check that πN |int(Q) is quasiconformal.

The reciprocality of Y implies the existence of a homeomorphism f : πN (Q)→ D
that is π

2 -quasiconformal in πN (Q). Set V = int(Q) and h = f ◦ πN |V .
We claim that h is a homeomorphism. The mapping h satisfies the assumptions

of Theorem 2.6 and condition (i) in this theorem. Let y ∈ D and C = h−1(y), and
fix a non-trivial continuum C ′ ⊂ D\{y}. The set C is connected and compact. The
modulus of the family of paths joining y to C ′ is zero, since planar domains satisfy
(12). Hence condition (i) in Theorem 2.6 implies that the modulus of the family
of paths joining C to h−1(C ′) is zero. Since h−1(C ′) is a non-trivial continuum,
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this happens only when C is a singleton; see for example [Raj17, Proposition 3.5].
Therefore h is injective. Consequently, h is a homeomorphism between planar
domains satisfying condition (i) from Theorem 2.6. According to the theory of
planar quasiconformal mappings, this suffices to show that h is a quasiconformal
homeomorphism; see [Väi71, Theorem 34.3] or [AIM09, Section 3]. �

Remark 3.13. Proposition 3.12 gives two simple criteria for (Ω/EN , d̃N ) to fail
to be reciprocal. First, if L2(E) > 0, then πN is not locally quasiconformal since
Lusin’s Condition (N−1) is violated. Second, if πN is not injective, then (Ω/EN , d̃N )
is not reciprocal.

4. Removable implies reciprocal

The objective of this section is to prove Theorem 1.3. An outline of the proof
is as follows. First, we give a pair of reductions, Lemmas 4.1 and 4.2, showing
that it suffices to consider only the case of admissible norm fields of the form
N = σ‖ · ‖2 defined on all of R2 for some bounded function σ : R2 → [0,∞).
Next, Proposition 4.3 gives a criterion for the mapping πN in our situation to be
quasiconformal: it suffices to show that πN preserves the modulus of the path
families Γ(ξ1, ξ3;R) and Γ(ξ2, ξ4;R) for a single rectangle R containing E with
boundary edges ξ1, ξ2, ξ3, ξ4.

We complete the proof by verifying the modulus condition of Proposition 4.3.
This part is an application of the classical theorem of uniformization onto slit do-
mains. This argument is based on the proof of Theorem 9 in [AB50]. In Section 4.3,
we extend Theorem 1.3 by relaxing the assumption that L(N) ∈ L∞loc(Ω) to the as-
sumption that L(N) ∈ Lploc(Ω) for some p ∈ (2,∞).

Lemma 4.1. An admissible norm field N on Ω is reciprocal if and only if the norm
field N̂ = ω(N) ‖·‖2 induced by the minimal stretching ω(N) is reciprocal.

Proof. It follows immediately from Lemma 3.3 that N̂ is admissible for any ad-
missible norm field N . By Proposition 3.12, it suffices to show that the metrics
generated by N and N̂ are locally quasiconformally equivalent. Observe first that
it follows directly from the definition that N̂ ≤ N . Since N has locally bounded
distortion, every point has a neighborhood U such that Nx ≤ HN̂x for some H > 0
and every x ∈ U . These facts imply that the corresponding distances are locally
bi-Lipschitz equivalent. �

For the following lemma, fix a subdomain Ω′ ⊂ Ω that contains E and is com-
pactly contained in Ω. Let K = Ω′. Given an admissible norm field N = σ ‖·‖2,
there exists α > 0 such that σ < α everywhere on K. We define

(24) N̂ =
(
σχK + αχR2\K

)
‖·‖2 .

The choice of α implies that N̂ is admissible on R2 vanishing exactly on E. Also,
N̂ coincides with N in Ω′.

Lemma 4.2. The norm field N = σ ‖·‖2 is reciprocal in Ω if and only if the
extension N̂ defined by (24) is reciprocal in R2. Moreover, in either one of these
cases the quotient maps πN̂ and πN are 1-quasiconformal homeomorphisms.

Proof. First of all, since N and N̂ are equal in Ω′, there exists a homeomorphism

f : πN (Ω′)→ πN̂ (Ω′)

for which πN̂ = πN ◦ f on Ω′. In fact, the map f is a local isometry and hence
1-quasiconformal.
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Since the restrictions of πN and πN̂ to the complement of E are locally bi-
Lipschitz, we deduce that they are locally quasiconformal if and only if their re-
strictions to Ω′ are locally quasiconformal. These two conditions are equivalent for
the maps since f is quasiconformal. We conclude from Proposition 3.12 that N is
reciprocal if and only if N̂ is reciprocal.

We are left to check that if πN is locally quasiconformal, then it is actually 1-
quasiconformal. Combining Theorem 2.6 with the local quasiconformality of πN ,
we conclude that h = π−1

N has the Sobolev regularity required for Lemma 3.10.
Therefore,

ρ =

(
1

σ
χΩ\E

)
◦ h

is a minimal weak upper gradient of h. Lemma 3.6 implies that the Jacobian Jh
equals (σ−2χΩ\E) ◦ h H2

d̃N
-almost everywhere. Therefore, condition (ii) in Theo-

rem 2.6 holds with K = 1. Consequently, KI(π) ≤ 1. The outer dilatation bound
for πN follows from Proposition 3.11. We conclude that πN is 1-quasiconformal.
The 1-quasiconformality of πN̂ is argued in a similar manner. �

4.1. A criterion for quasiconformality. We consider an admissible norm field
N = σ ‖·‖2 defined on a domain Ω ⊂ R2 vanishing exactly on a non-separating
compact set E ⊂ Ω.

We consider a quadrilateral Q ⊂ Ω whose boundary ∂Q does not intersect the
set E. Let (ξ1, ξ2, ξ3, ξ4) be a decomposition of ∂Q into four nonoverlapping arcs
labelled in counterclockwise order.

Since ∂Q does not intersect E, πN |∂Q is a homeomorphism onto its image (Propo-
sition 3.8). As a consequence of Corollary 3.9, the image πNQ is a Jordan domain
with boundary πN∂Q consisting of the arcs (πNξ1, πNξ2, πNξ3, πNξ4).

We fix some notation for the following proof. Let

Γ1 = Γ (ξ1, ξ3;Q) and Γ̃1 = Γ (πNξ1, πNξ3;πNQ) ;

Γ2 = Γ (ξ2, ξ4;Q) and Γ̃2 = Γ (πNξ1, πNξ3;πNQ) .

We defined Γ(F1, F2;G) in Section 2.5. Observe that πNΓ1 ⊂ Γ̃1 and πNΓ2 ⊂ Γ̃2.

Proposition 4.3. Let N = σ ‖·‖2 be admissible. If mod Γ1 = mod Γ̃1 and
mod Γ2 = mod Γ̃2, then the restriction of πN to Q is a homeomorphism and 1-
quasiconformal.

Proof. Proposition 3.11 and the special form of N imply that KO(πN ) = 1, so we
only need to check that πN |Q is injective and that its inverse has its outer dilatation
bounded above by 1.

It was proved in [RR19] that there exists a continuous function

ũ1 : πNQ→ [0, 1]

in the Sobolev space N1,2(πNQ) whose minimal weak upper gradient ρ̃1 is a mini-
mizer for mod Γ̃1. The function ũ1 satisfies the boundary conditions ũ1(πNξ1) = 0
and ũ1(πNξ3) = 1.

Consider u1 = ũ1 ◦ πN . Since N = σ ‖·‖2 and πN has bounded outer dilatation,
it is readily verified that ρ1 = (ρ̃1 ◦ πN )σ ∈ L2(Q) is a weak upper gradient of u1

with L2-norm mod Γ̃1 = mod Γ1. Therefore u1 ∈ N1,2(Q).
A consequence of Weyl’s lemma [AIM09, A.6.10] and continuity of u1 is that u1

is harmonic in the interior of Q; it minimizes the Dirichlet energy among continuous
Sobolev maps u : Q→ [0, 1] with boundary values u(ξ1) = 0 and u(ξ3) = 1.

We repeat the above argument for the path families Γ2 and Γ̃2. Let u2 and ũ2

denote the corresponding functions, where u2(ξ2) = 0 and u2(ξ4) = 1.
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Let M = mod Γ1. A consequence of the Riemann mapping theorem is that Mu2

is a harmonic conjugate of u1 and the restriction of f = (u1,Mu2) to the interior
of Q is conformal. The map extends as a homeomorphism to the boundary ∂Q.

Let f̃ = (ũ1,Mũ2). Then f = f̃ ◦ πN by construction. Since f is bijective, this
implies that the restriction of πN to Q is a homeomorphism.

Since ∂Q does not intersect E, there is a Jordan neighborhood U ⊃ Q such that
πN |U is a homeomorphism and U ∩E = Q∩E (Proposition 3.8). Let h denote the
inverse of πN |U .

We claim that h ∈ N1,2
loc (πN (U), U). Since πN is locally bi-Lipschitz in the

complement of E and E ∩ U ⊂ int(Q), it suffices to verify that h|V is an ele-
ment of N1,2

loc (V,U), where V = πN (int(Q)). This regularity follows readily since
the restriction of f to the interior of Q is locally bi-Lipschitz, f̃ is an element of
N1,2 (πNQ, [0, 1]× [0,M ]), and h = f−1 ◦ f̃ in V . Now the outer dilatation bound
KO(h) ≤ 1 follows from Lemma 3.10 and the change of variables formula for πN . �
Remark 4.4. Given an admissible norm field N = σ ‖·‖2, the equalities mod Γ1 =

mod Γ̃1 and mod Γ2 = mod Γ̃2 in Proposition 4.3 hold if and only if

(25) mod Γ̃1 mod Γ̃2 ≤ 1.

Furthermore, if (25) holds, Proposition 4.3 implies that a 1-quasiconformal home-
omorphism ϕ : πN (Q) → D exists. Conversely, if such a homeomorphism ϕ exists,
the inequality (25) follows.

Proposition 4.3 is related to a question posed by Rajala in [Raj17]. Rajala asks
whether the reciprocal upper bound (11) implies that points have zero modulus in
the sense of (12). Proposition 4.3 verifies this for admissible norm fields N = σ ‖·‖2
satisfying the sharp upper bound (25).

4.2. Proof of Theorem 1.3. Let E ⊂ R2 be removable for conformal mappings.
We want to prove that for any domain Ω ⊃ E and admissible norm field N : Ω ×
R2 → [0,∞) vanishing exactly on E, the quotient space (Ω/EN , d̃N ) is reciprocal.

As shown in Lemma 4.1 and Lemma 4.2, we only need to consider the case where
Ω = R2 and N = σ ‖·‖2.

Let R = [a, b] × [c, d] be a rectangle whose interior contains E. Let ξ1 = {a} ×
[c, d], ξ2 = [a, b]× {c}, ξ3 = {b} × [c, d], and ξ4 = [a, b]× {d}. Let Γ1 = Γ(ξ1, ξ3;R)
and Γ2 = Γ(ξ2, ξ4;R).

Let Γ̃1 denote the family of paths joining πNξ1 to πNξ3 in πNR and Γ̃2 the
family of paths joining πNξ2 to πNξ4 in πNR. We claim that mod Γ̃1 = mod Γ1

and mod Γ̃2 = mod Γ2. Proposition 4.3 then implies that πN is 1-quasiconformal
in the interior of R. Since R is an arbitrary rectangle containing E, it then follows
that πN is globally 1-quasiconformal.

Observe that the inequalities mod Γ̃1 ≥ mod Γ1 and mod Γ̃2 ≥ mod Γ2 hold in
general by Proposition 3.11. Thus we only need to verify the opposite inequalities.

A standard fact is that there is a sequence of finitely connected domains Ωk ⊂
R2 \ E such that Ωk ⊂ Ωk+1 for all k ∈ N, each component of ∂Ωk is a closed
analytic Jordan path, and

⋃∞
k=1 Ωk = R2 \E. We assume without loss of generality

that ∂R ⊂ Ω1.
For each n ∈ N, there exists a conformal embedding ϕn : Ωn → R2 normalized

as
ϕn(z) = z +

a1,n

z
+
a2,n

z2
+ · · ·

near ∞ such that the real part of a1,n is the smallest among all conformal embed-
dings ψ : Ωn → R2 of the form

(26) ψ(z) = z +
a1

z
+
a2

z2
+ · · · .
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See for example Section V.2 of [Gol69].
For each n ∈ N, the minimizer ϕn is unique and its image is a domain Un ⊂ R2

whose complement consists of finitely many line segments parallel to the vertical
axis.

For each n ∈ N, the minimality of the real part of a1,n implies that 0 ≥ Re(a1,k) ≥
Re(a1,n) for each k ≥ n. Hence the mappings ϕk|Ωn : Ωn → R2, k ≥ n, form
a normal family. See the proof of Theorem 1 of [Gol69, Section V.2] for details.
A diagonal argument then implies that (ϕn)∞n=1 is a normal family. Thus every
subsequence of (ϕn)∞n=1 has a further subsequence converging uniformly on compact
sets to a conformal map f : R2 \ E → R2 satisfying the normalization (26) around
∞. By the removability of E, the map extends to a Möbius transformation, and
thus (26) implies that f(z) = z for all z ∈ R2. Hence the sequence (ϕn)∞n=1 itself
must converge to the identity map uniformly on compact sets in R2 \ E.

Let Qn denote the quadrilateral bounded by the Jordan curve ϕn(∂R). The
quadrilaterals Qn converge to R with respect to Hausdorff distance as n→∞. Let
π1 and π2 denote projection onto the x-axis and y-axis, respectively, and let an =
supπ1(ϕn(ξ1)), bn = inf π1(ϕn(ξ3)), cn = inf π2(ϕn(ξ2)) and dn = supπ2(ϕn(ξ4)).

Let Rn = [an, bn]× [cn, dn] and Ên = R2 \ ϕn(Ωn). Observe that Ên consists of
finitely many vertical slits. Moreover, the sets Ên converge to E in the Hausdorff
distance as n→∞.

There exists n0 such that for all n ≥ n0, the slits Ên are contained in the interior
of Rn, and 0 < bn − an and 0 < dn − cn. Fix such an n. We claim that

(27) mod Γ̃1 ≤
dn − cn
bn − an

.

Consider the function ρn : R2/EN → [0,∞] defined as zero in the complement of
πN (Ωn), and otherwise by

ρn =

((
χRn\Ên
bn − an

◦ ϕn
)
· J
−1/2
ϕn

σ

)
◦ (πN |Ωn)−1.

We claim that ρn is admissible for Γ̃1. Let γ ∈ Γ̃1 be locally rectifiable with respect
to d̃N .

We consider the restriction of γ to the set I = γ−1
(
πNϕ

−1
n (Rn \ Ên)

)
. We have

∫

γ

ρn dsd̃N ≥
∫

I

(ρn ◦ γ) · vγ dL1.

The function θ = ϕn ◦ (πN |Ωn+1
)−1 ◦ γ|I is well-defined and satisfies

∫

I

(ρn ◦ γ) · vγ dL1 =

∫

I

(
χRn\Ên
bn − an

◦ θ
)
· vθ dL1.

Since Ên consists of finitely many vertical slits, we conclude using the area formula
for paths and the projection onto the x-axis that

∫

I

(
χRn\Ên
bn − an

◦ θ
)
· vθ dL1 ≥ 1

bn − an
L1 (|π1 ◦ θ|) ≥ 1.

Therefore ∫

γ

ρn dsd̃N ≥ 1,

and we conclude that ρn is admissible. The change of variables formulas for πN
and ϕn yield that ∫

R2/EN
ρ2
n dH2

d̃N
=
dn − cn
bn − an

.
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This verifies (27). Finally, observe that dn − cn → d − c and bn − an → b − a as
n→∞. This shows that

mod Γ̃1 ≤
d− c
b− a = mod Γ1.

A similar argument, using conformal mappings onto horizontal slit domains, shows
that mod Γ̃2 ≤ mod Γ2. This completes the proof.

4.3. An extension of Theorem 1.3 to integrable norm fields. In this section,
we extend Theorem 1.3 to the case of lower semicontinuous norm fields N with
locally bounded distortion such that L(N) ∈ Lploc(Ω) for some p ∈ (2,∞). We
assume that N vanishes exactly on a compact set E ⊂ Ω that is removable for
conformal mappings.

For this section, we allow the possibility for Nx to be infinite at some points
x ∈ Ω. To say this more precisely, in the definition of seminorm in Section 2.3,
we consider a seminorm to be a function S : R2 → [0,∞] satisfying the same as-
sumptions listed there, following the convention that 0 · ∞ = 0. An admissible
norm field is now a function N : Ω× R2 → [0,∞] satisfying the conditions of Defi-
nition 3.1, except that local boundedness of N is now replaced by the assumption
that L(N) ∈ Lploc(Ω). Observe that the local boundedness of the distortion then
implies that if Nx(v) =∞ for some v ∈ R2 \ {0}, then Nx must have the form

Nx(v) =

{
∞ if v 6= 0

0 if v = 0
.

In particular, ω(Nx) = L(Nx) =∞. Note also that the minimal stretching ω(N) is
lower semicontinuous, and that Lemma 3.3 remains true for x ∈ Ω with ω(Nx) <∞.

We define the pseudodistance dN exactly as in Definition 3.2. Then for every
x, y ∈ Ω and any absolutely continuous path γ : [0, 1]→ Ω joining x to y,

(28) dN (x, y) ≤
∫ 1

0

(N ◦Dγ) dL1 ≤
∫

γ

L(N) ds‖·‖2 .

Given z ∈ Ω, for each x ∈ Ω we let uz(x) = inf
∫
γ
L(N) ds, the infimum taken

over all absolutely continuous paths joining z to x in Ω. Then x 7→ uz(x) defines a
locally Hölder continuous function [HKST15, Theorems 9.3.1, 9.2.14] having L(N)
as a locally Lp-integrable upper gradient. The Hölder exponent depends only on
p, and the local Hölder constant depends only on the local Lp-norm of L(N).
Moreover, (28) yields that

(29) dN (x, y) ≤ sup
z∈Ω
|uz(x)− uz(y)| .

As before, we identify the two points x, y ∈ Ω if dN (x, y) = 0 and let X denote the
corresponding quotient space. Let π : Ω→ X denote the associated quotient map.
The quotient distance dX on X is defined as follows: for every x, y ∈ X, we set
dX(x, y) = dN (π−1(x), π−1(y)), observing that this is independent of the choice of
element in π−1(x) and π−1(y) and hence well-defined. The inequality (29) implies
that π is locally Hölder continuous with L(N) as its locally Lp-integrable upper
gradient. In particular, π ∈ N1,p

loc (Ω, X).
We are now ready for the main result of this section. We recall that N is assumed

to vanish on a compact set E removable for conformal mappings.

Proposition 4.5. The metric space X has locally finite Hausdorff 2-measure, and
the quotient map π is a locally quasiconformal homeomorphism. In particular, X
is a quasiconformal surface.
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Proof. We first prove that π is a homeomorphism. To this end, let σ(z) = ω(Nz)

and N̂z = σ(z) ‖·‖2 for every z ∈ Ω. For each k ∈ N, we define the function
σk : Ω→ [0,∞) by

σk(z) = min {σ(z), k} .
Each function σk is bounded and lower semicontinuous in Ω, and σk(z) = 0 if and
only if σ(z) = 0. For every z ∈ Ω, the sequence (σk(z))∞k=1 is non-decreasing and
converges to σ(z).

Let Nk = σk ‖·‖2 and dk = dNk . Since Nk is bounded and lower semicon-
tinuous, Theorem 1.3 implies that πk : Ω → (Ω, dk) defined by πk(z) = z is a
1-quasiconformal homeomorphism. Since Nk ≤ ω(N) ‖·‖2 ≤ N everywhere, we see
that

dk(πk(x), πk(y)) ≤ dX(π(x), π(y))

for all x, y ∈ Ω. Since πk is a homeomorphism, we see that π is injective. Now the
map ψk : X → (Ω, dk) defined by ψk = πk◦π−1 is 1-Lipschitz, hence π−1 = π−1

k ◦ψk
is continuous. Therefore π is a homeomorphism.

Recall that N has locally bounded distortion. From this and the fact that, for
every x ∈ X, π−1(BX(x, r)) is compact for sufficiently small r > 0, we see that the
induced distances dN and dN̂ are locally bi-Lipschitz equivalent. We assume from
this point onwards, without loss of generality, that N = N̂ = σ ‖·‖2.

Let Γ0 denote the family of paths along which σ = L(N) fails to be integrable.
Since σ ∈ Lploc(Ω) ⊂ L2

loc(Ω), the family Γ0 has zero modulus. The inequality
dX ≥ dk and Lemma 3.7 imply that for any absolutely continuous path θ in Ω

`dX (π ◦ θ) ≥ lim
k→∞

`dk(ψk ◦ θ) = lim
k→∞

`Nk(θ) = `N (θ),

where the latter equality follows from monotone convergence. If θ 6∈ Γ0, we have
`N (θ) < ∞ and the definition of dX implies `dX (π ◦ θ) ≤ `N (θ). So `dX (π ◦ θ) =
`N (θ). Since the equality `dX (π ◦ θ) = `N (θ) holds outside the negligible family Γ0,
the norm field N is the approximate metric differential of πN ; see [LW18, Sections
3.3 and 3.4]. Consequently, L(N) = σ is a minimal weak upper gradient of πN
and J2(N) = σ2 the Jacobian of πN . Since we also have that π ∈ N1,p

loc (Ω, X) for
p > 2, it satisfies Lusin’s Condition (N) [Vod00, Theorem 7.1]. Therefore, for each
compact set K ⊂ Ω,

H2
X(π(K)) =

∫

K

σ2 dL2 <∞.

We conclude that X has locally finite Hausdorff 2-measure. An application of
Theorem 2.6 yields that KO(π) = 1.

The proof is complete after we verify KO(π−1) = 1. Since πk is 1-quasiconformal
for every k, it suffices to verify KO(ψk) = 1 for some k. To this end, we fix an
arbitrary k ∈ N and recall that ψk is 1-Lipschitz.

Since πk is a quasiconformal homeomorphism, it satisfies Lusin’s Condition
(N−1). This implies that the map π−1 satisfies Lusin’s Condition (N). As a
consequence, the Jacobian of ψk coincides with ρ2

k for ρk = ((σk/σ)χΩ\E) ◦ π−1.
Since ψk is Lipschitz, we have ψk ∈ N1,2

loc (X, (Ω, dk)). We claim that any minimal
weak upper gradient of ψk coincides with ρk almost everywhere in X. If we verify
this, then KO(ψk) = 1 follows from Theorem 2.6.

Consider an absolutely continuous path γ : [0, 1] → X with |γ| ⊂ X \ π(E).
Then ψk ◦ γ is absolutely continuous, and since dk and ‖·‖2 are locally bi-Lipschitz
equivalent in a neighborhood of the image of θ = π−1

k ◦ψk◦γ, the path θ is absolutely
continuous with respect to ‖·‖2. Then, by monotone convergence and Lemma 3.7
applied to each dn,

`N (θ) = lim
n→∞

`Nn(θ) = lim
n→∞

`dn(ψn ◦ γ).
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Since every ψn is 1-Lipschitz,

lim
n→∞

`dn(ψn ◦ γ) ≤ `dX (γ).

Therefore `N (θ) ≤ `dX (γ) <∞, and, by the construction of dX , `dX (γ) ≤ `N (θ).
Since `N (θ) = `dX (γ) holds for every subpath of γ, we see that vγ = N ◦Dθ =

(σ ◦ θ) · vθ and vψk◦γ = (σk ◦ θ) · vθ almost everywhere in the domain of γ. We
conclude from this that

(30) vψk◦γ = (ρk ◦ γ) · vγ
almost everywhere with respect to the length measure of γ. If Γ̃0 denotes the family
of absolutely continuous paths in X that have positive length on the set π(E), then
H2
X(π(E)) = 0 implies mod Γ̃0 = 0. The equality (30) remains valid for every

absolutely continuous path γ 6∈ Γ̃0. Indeed, for any such path γ : [a, b] → X, the
set γ−1(π(E)) is a compact set having vγL1-measure zero. This observation and
the fact that (30) holds on compact intervals contained in [a, b] \ γ−1(π(E)) yield
the validity of (30). Since (30) is valid for every γ outside a negligible family, ρk is
a minimal weak upper gradient of ψk. �

Remark 4.6. The norm field N = σ ‖·‖2 defined by the weight σ(x) = ‖x‖−1
2 (1−

log ‖x‖2)−1 ∈ L2(D) induces a complete hyperbolic metric on the punctured disk
of radius e. In particular, the origin is at infinite distance from any other point.
Consequently, the assumption p > 2 in Proposition 4.5 cannot be relaxed to p = 2.

5. Reciprocal implies removable

This section is dedicated to a proof of Theorem 1.4. Recall that we consider
a compact set E ⊂ Ω for which Ω \ E is connected, together with the norm field
N defined by Nx = min

{
1, d‖·‖2(E, x)p

}
‖·‖2 for some p > max {dimHE − 1, 0}.

The norm field N induces a decomposition EN of Ω, a metric d̃N on Ω/EN , and a
quotient map π : Ω→ (Ω/EN , d̃N ), as described in Section 3.

5.1. Decay of the norm field near E. The following lemma states that if N
decays to zero sufficently fast near E, then each component of E collapses to a
point under the quotient map πN .

Lemma 5.1. Let Nx = min{1, d‖·‖2(x,E)p} ‖·‖2. For all p > max {dimHE − 1, 0},
H1
d̃N

(πN (E)) = 0. Consequently, the preimage of every x ∈ πN (E) is a connected
component of E.

Proof. Let p > dimHE−1 and let ε > 0. By the definition of Hausdorff dimension,
there exists δ > 0 and a countable collection of sets A = {Aj} such that E ⊂ ⋃j Aj ,
diam‖·‖2 Aj ≤ δ for all j, and

∑

j

(diam‖·‖2 Aj)
p+1 < ε.

Without loss of generality, we may assume that Aj ∩ E 6= ∅ for all j. Let dj =

diam‖·‖2 Aj . Thus Aj ⊂ B‖·‖2(y, dj) for some y ∈ E. By integrating N over the
straight-line path from y to a point z ∈ Aj , it follows that

dN (y, z) ≤
∫ dj

0

tp dt =
dp+1
j

p+ 1
.

Thus diamdN Aj ≤ 2(p + 1)−1dp+1
j < 2(p + 1)−1δp+1, and

∑
j diamdN Aj < 2(p +

1)−1ε. This is sufficient to show that H1
d̃N

(πN (E)) = 0.
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Next, let x ∈ πN (E). Proposition 3.8 implies that π−1
N (x) is a subset of a

connected component F of E. Since πN (F ) is a connected, compact subset of
πN (E), we have that

diamπN (F ) ≤ H1
d̃N

(πN (F )) ≤ H1
d̃N

(πN (E)) = 0.

Hence πN (F ) = x and we must have F = π−1
N (x). �

5.2. Proof of Theorem 1.4. We first observe that if (Ω/EN , d̃N ) is reciprocal,
then the space formed by taking the same set E and the same definition for N , but
applied to all points x ∈ R2, is also reciprocal. Thus the choice of domain Ω is not
relevant for the proof, and we assume for the remainder of the section that Ω = R2.

We prove the contrapositive: if E is not removable for conformal mappings, then
(R2/EN , d̃N ) is not reciprocal.

Let E ⊂ R2 be a set that is not removable for conformal mappings. As a
consequence of Proposition 2.9, there is a compact set Ê ⊂ R2 of positive Lebesgue
measure and a conformal map f : R2 \ Ê → R2 \E whose extension to R̂2 \ Ê fixes
∞. Let N̂ = χR2\Ê ‖·‖2 and let π̂ : R2 → (R2/EN̂ , d̃N̂ ) be the associated quotient

map. Observe that N̂ is an admissible norm field vanishing on the set Ê.
The following lemma states that f extends to a mapping of the respective quo-

tient spaces. For brevity, let Ŷ = R2/EN̂ and Y = R2/EN .

Lemma 5.2. The map f : R2 \ Ê → R2 \ E induces a continuous monotone map
f̂ : Ŷ → Y . That is, there is a monotone map f̂ : Ŷ → Y satisfying f̂ ◦ π̂(x) =

πN ◦ f(x) for all x ∈ R2 \ Ê.

Proof. Let y ∈ Ŷ , and let F̂ denote its preimage under π̂. If F̂ = {x} for some
point x /∈ Ê, then we set f̂(y) = πN ◦ f(x).

Otherwise, F̂ is a subset of some component Â of Ê. For all m ∈ N, let γ̂m
be a Jordan path with image contained in B‖·‖2(Â, 1/m) \ Ê that separates Â and
infinity. The curve |γ̂m| is the boundary of a closed region Âm containing Â. We
assume without loss of generality that |γ̂m+1| ⊂ Âm for all m.

By assumption, γm = f ◦ γ̂m is a Jordan loop whose image bounds a compactly
contained domain Am. Let A =

⋂
mAm. It is immediate that A is nonempty and

compact. The intersection is also connected; see for example Section 28 of [Wil70].
This implies that A is a connected component of E. Therefore πN (A) is a point by
Lemma 5.1. We define f̂(y) = πN (A).

We now check that f̂ is continuous. Let y ∈ Ŷ and let (yn) be a sequence in
Ŷ converging to y. Let F̂n = π̂−1(yn). In the case that F̂ = {x} for some x /∈ Ê,
the continuity is obvious. Otherwise, we proceed as follows. For each fixed m ∈ N,
Fn ⊂ Âm for sufficiently large n. This implies that f̂(yn) ⊂ πN (Am). Therefore
the accumulation points of f̂(yn) are in the intersection of πN (Am). Since the
intersection equals πN (A), the sequence f̂(yn) converges to πN (A) = f̂(y). The
continuity follows.

By construction, the preimage of a point in R2/E under π̂ ◦ f̂ is either a single-
point set or a component of Ê. We conclude that f̂ is monotone. �

Let R = [a, b] × [c, d] ⊂ R2 be a rectangle whose interior contains Ê. Let Γ1

denote the family of paths γt : [a, b]→ R2, where t ∈ [c, d], defined by γt(s) = (s, t).
Thus Γ1 is a foliation of R by horizontal paths. Let Γ2 denote the corresponding
foliation of R by vertical paths.

Next, let Q be the Jordan domain bounded by f(∂R), and let ξ1, ξ2, ξ3, ξ4 denote,
respectively, the image of the left, bottom, right, and top side of R. Let Γ̃1 denote
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the family paths joining πNξ1 to πNξ3 in πNQ and Γ̃2 the family of paths joining
πNξ2 to πNξ4.

By Lemma 4.2, it suffices to show that Y is not 1-reciprocal. Thus the proof is
complete after we verify the inequalities

(31) 1 < mod π̂Γ1 mod π̂Γ2

and

(32) mod π̂Γ1 mod π̂Γ2 ≤ mod Γ̃1 mod Γ̃2.

Define the function P : R2 → [0,∞] by

P (x) =

{
L(Nf(x)) ‖Dxf‖ if x 6∈ Ê
0 if x ∈ Ê .

Since N is a weighted Euclidean norm and f is conformal in the complement of Ê,
it follows that N ◦Dxf(v) = P (x) ‖v‖2 for all v ∈ R2 and all x ∈ R2 \ Ê.

We consider the function P̂ : R2/Ê → [0,∞] defined by taking P̂ (x) = P (π̂−1(x)).
Observe that P̂ is well-defined since π̂ is injective outside of Ê. Loosely speaking,
P̂ is a weak upper gradient of f̂ .

Let ρ : f̂(R̂)→ [0,∞] be an admissible function for Γ̃1, and let ρ̂ = (ρ ◦ f̂)P̂ . We
first observe that

(33)
∫

R̂

ρ̂2 dH2
d̂

=

∫

f̂(R̂)

ρ2 dH2
d̃N
.

Indeed, the integrals are left unchanged by the removal of πN (E) and π̂(Ê) from
both sides. With this reduction, the identity (33) follows from the Jacobian iden-
tities Jf ≡ ‖Df‖2, Jπ̂ = χR2\E , and JπN = L2(N).

Next, we claim that ρ̂ is weakly admissible for π̂Γ1. Let γ̂t denote the image
under π̂ of the horizontal path γt in the quotient space R2/Ê . Lemma 3.7 implies
that

(34) vf̂◦γ̂t(s) = N ◦Df ◦Dγt(s) =
(
P̂ ◦ γ̂t(s)

)
· vγ̂t(s)

for L1-almost every s ∈ [a, b] \ γ−1
t (Ê) and that the total variation of γ̂t in π̂Ê is

zero. Similarly, since H1
d̃N

(πN (E)) = 0 by Lemma 5.1, the area formula [Fed69,

Theorem 2.10.13] for paths implies that the total variation of f̂ ◦ γ̂t in πN (E) is
zero. We conclude that f̂ ◦ γ̂t is absolutely continuous as long as the right-hand
side of (34) is integrable.

Observe that (33) holds with the characteristic function χf̂ R̂ in place of ρ and
P̂ in place of ρ̂. Then an application of Fubini’s theorem implies that the function
in the right-hand side of (34) is integrable for L1-almost every t. For such t, we
conclude from (34) that

1 ≤
∫

f̂◦γ̂t
ρ ds =

∫

γ̂t

ρ̂ ds.

Therefore ρ̂ is weakly admissible for π̂Γ1, and the equality (33) implies that

mod π̂Γ1 ≤ mod Γ̃1.

A similar argument applied to the path family π̂Γ2 gives mod π̂Γ2 ≤ mod Γ̃2. The
inequality (32) now follows.

To conclude the proof, we prove (31). Let ρ be admissible for π̂Γ1. Then for
all t ∈ [c, d], we have 1 ≤

∫ d
c
ρ ◦ π̂χR2\Ê(s, t) dt. Applying Fubini’s theorem and
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Hölder’s inequality gives

d− c ≤
∫

R

ρ ◦ π̂χR2\Ê dL2 ≤
(∫

R

ρ ◦ π̂2χR2\Ê dL2

)1/2

L2(R \ Ê)1/2.

After rearranging and taking the infimum over admissible ρ, we find that

(d− c)2/L2(R \ Ê) ≤ mod π̂Γ1.

The analogous argument gives (b− a)2/L2(R \ Ê) ≤ mod π̂Γ2. Thus

1 <
(b− a)2(d− c)2

L2(R \ Ê)2
≤ mod π̂Γ1 mod π̂Γ2.

This establishes (31) and completes the proof.

6. Linear Cantor sets: two examples

We call a Cantor set E ⊂ R×{0} a linear Cantor set. As remarked in Section 1.3,
a norm field vanishing on a linear Cantor set E of positive length may or may
not be reciprocal. For completeness, we include here two explicit examples to
illustrate both of these cases. Recall from the discussion following the statement of
Theorem 1.4 that a compact set E ⊂ [0, 1]×{0} is removable for conformal mappings
if there exists an admissible norm field N vanishing on E that is reciprocal. Such
a set E is necessarily a linear Cantor set by Proposition 3.12. Conversely, if there
exists an admissible norm field vanishing on a linear Cantor set E that is not
reciprocal, then E is not removable for conformal mappings. Versions of these
examples are already present in [AB50, Sections 6-7]. A closely related construction,
and the one that we directly based Example 6.1 on, is found in Section 11 of an
early version of the paper [Sch95].

Example 6.1. We construct a lower semicontinuous weight σ : R2 → [0,∞] that
vanishes on a Cantor set E ⊂ [0, 1] × {0} of positive length such that the space
(R2, dσ) is not reciprocal. The idea is to make E sufficiently large so that the
modulus of the path family joining (0, 0) to (0, 1) in (R2, dσ) is positive.

Identify [0, 1] with the set [0, 1] × {0} ⊂ R2. Let a1 = 1/2, and now define
inductively sequences (aj), (bj) by the rules bj = aj/ exp(4j) and aj+1 = (aj−bj)/2.

Let I1 be an open interval centered at t1 = 1/2 of length 2b1. Define next
open intervals Ij inductively as follows. Assume that we have a collection of dis-
joint open intervals I1, . . . , Ij−1. From the complement [0, 1] \⋃j−1

k=1 Ik, choose any
closed interval Jj of largest length. Let tj be the midpoint of Jj , and let Ij be
the open interval centered at tj of length 2bj . We record the observation that
d‖·‖2(tj , {0, 1}) = min{tj , 1 − tj} ≥ aj . Let E = [0, 1] \⋃j Ij , and let σ = χR2\E .
This yields a corresponding metric dσ on R2. Note that the metric dσ agrees with
the Euclidean metric locally outside of E. Thus the Hausdorff 2-measure relative to
dσ coincides with Lebesgue 2-measure. Also, observe that the Lebesgue 1-measure
of [0, 1] \ E is at most

∑∞
j=1 2bj < 1.

Consider now an interval Ij . For all t ∈ (tj − aj , tj − bj), let γj,t be the path
that connects t to 2tj − t along the upper semicircle of the circle centered at tj
with radius tj − t. Let Γj be the family of all such paths γj,t. Observe that Γj
is a full-modulus subfamily of the family of paths in the upper half-plane H that
separate the sets B‖·‖2((tj , 0), bj) and H \B‖·‖2((tj , 0), aj).

Since the metric speed of γ ∈ Γj with respect to Euclidean distance and with
respect to dσ coincide almost everywhere along γ, the modulus of Γj with respect
to the metric dσ equals the Euclidean modulus: modπσΓj = log(aj/bj)/π. See for
example [Hei01, Lemma 7.18].
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We claim that the metric dσ violates the reciprocality condition (12). Let
F1 = {(0, 0)} and F2 = {(1, 0)} and let Γ = Γ(F1, F2;R2). Recall the notation
Γ(F1, F2;G) defined in Section 2.5.

Observe that Γ is a subfamily of Γ(F1,R2 \ D;R2), which is majorized by the
annular path families Γ(B‖·‖2(0, ε),R2 \ D;R2) for all ε > 0. In particular,

modπσΓ(B‖·‖2(0, ε),R2 \ D;R2) ≥ modπσΓ

for all ε > 0. Thus it is sufficient to show that modπσΓ > 0.
Let ρ be an admissible function for Γ for the metric dσ. For each j ∈ N, let

mj = inf{
∫
γ
ρ dsσ : γ ∈ Γj}. If mj > 0, this implies that ρ/mj is admissible for the

path family Γj , and thus that

(35)
∫

R2

ρ2

m2
j

dH2
σ ≥ mod Γj =

log(aj/bj)

π
.

For each j ∈ N, let γj be a path in Γj such that
∫
γj
ρ dsσ ≤ max{2mj , 2

−j−1}. For
each i ∈ N, we define ηi : [0, 1]→ R2 by

ηi(t) = (t, θi(t)),

where θi(t) = sup1≤j≤i π2(|γj | ∩ ({t} × R)). Here, π2 denotes projection onto the
vertical axis and the supremum over the empty set is meant to be zero. Observe
that ηi ∈ Γ.

Let θ(t) = limi→∞ θi(t), and observe for every t ∈ (0, 1) \ E, θ(t) > 0 since for
each j the projection of |γj | to the x-axis covers the interval Ij . We set η(t) =
(t, θ(t)) for 0 ≤ t ≤ 1, and note that

`σ(η) ≤ lim inf
i→∞

`σ(ηi) ≤
∞∑

j=1

`‖·‖2(γj) ≤
∞∑

j=1

πaj ≤ π.

Consequently, η is dσ-rectifiable, and

1 ≤
∫

η

ρ dsσ ≤
∞∑

j=1

∫

γj

ρ dsσ ≤
∞∑

j=1

max{2mj , 2
−j−1}.

From the identity
∑∞
j=1 1/2j = 1, it follows that mj ≥ 1/(2j+1) for some j ∈ N.

This together with (35) gives

1

2j+1
≤ mj ≤

(
π

log(aj/bj)

)1/2(∫

R2

ρ2 dH2
‖·‖2

)1/2

=
( π

4j

)1/2
(∫

R2

ρ2 dH2
‖·‖2

)1/2

.

This yields the lower bound
1

4π
≤
∫

R2

ρ2 dH2
‖·‖2 .

We conclude that (R2, dσ) is not reciprocal.

Example 6.2. We construct a lower semicontinuous weight σ : R2 → [0,∞] that
vanishes on a Cantor set E ⊂ [0, 1] × {0} of positive length such that the space
(R2, dσ) is reciprocal.

Consider the quadrilateral Q = [0, 1] × [−1, 1]. Let Γ be the family of paths in
Q connecting the left and right edges of Q.

Fix for the time being a value t ∈ (0, 1/2). Let I = [t, 1− t]× {0} ⊂ (0, 1)× {0}
and let σ1 = χR2\I , noting that σ1 vanishes on the set I. Let E1 denote the
decomposition of R2 corresponding to I. The weight σ1 determines a metric d̃σ1



34 TONI IKONEN AND MATTHEW ROMNEY

on R2/E1 that is not reciprocal. Let πσ1
denote the associated quotient map. The

metric d̃σ1
, like all other metrics in this example, agrees with the Euclidean metric

locally outside of πσ1(I), and the Hausdorff 2-measure relative to the metric d̃σ1

coincides with Lebesgue measure.
Let ρ̃ be an admissible function for πσ1

Γ with respect to the metric d̃σ1
satisfying∫

R2/E1 ρ̃
2 dH2

d̃σ1
≤ 2 modπσ1

Γ. Since the function

g̃ =
χ[0,t)×[−1,1] + χ(1−t,1]×[−1,1]

2t

is admissible for πσ1Γ, it follows that

(36)
∫

R2/E1
ρ̃2 dH2

d̃σ1
≤ 2

∫

R2/E1
g̃2 dH2

d̃σ1
=

2

t
.

Let ρ = χQ + ρ̃ ◦ πσ1
.

For all n ∈ N and i ∈ {1, . . . , n}, let ϕni denote the similarity mapping of R2

taking I to the interval [(i− 1 + t)/n, (i− t)/n]. Explicitly,

ϕni (x) = x/n+ ((i− 1)/n, 0).

Let In =
⋃n
i=1 ϕ

n
i (I) and let En denote the corresponding decomposition of R2. Let

σn = χR2\In , and d̃σn the resulting metric on R2/En.
Let ρni = ρ ◦ (ϕni )−1. Define now the function ρn : Q→ [0,∞] by

ρn(x) =

{
ρni (x) if x ∈ ϕni ((0, 1)× [−1, 1]) for some i ∈ {1, . . . , n}
1 otherwise .

For all x ∈ πσn(Q), we define ρ̃n(x) = ρn(π−1
σn (x)). We claim that ρ̃n is admissible

for πσnΓ with respect to the metric d̃σn .
Consider an arbitrary path γ ∈ πσnΓ. For each i ∈ {1, . . . , n}, let

Qni = [(i− 1)/n, i/n]× [−1, 1],

and let γni be a subpath of γ that traverses Qni horizontally. It suffices to show that
∫

γni

ρnσn ds‖·‖2 ≥ 1/n.

If γni does not intersect In, then this is clear since ρni ≥ 1 on Qni \ In. If γni is
contained in ϕni (Q), then this is also immediate by the admissibility of ρ̃. Finally,
if γni intersects both In and Qni \ ϕni (Q), then γni must travel a vertical distance
of 1/n, and again the conclusion follows. We conclude that ρn is admissible for Γ
with respect to the metric dσn .

Next, we have the upper bound
∫

Q

ρ2
n dL2 ≤

∫

Q

1 dL2 +

n∑

i=1

∫

Qni

(ρni )2 dL2 ≤ 2 +
‖ρ‖2L2(Q)

n
.(37)

Observe that 2 = mod Γ. Thus, by taking n to be sufficiently large, the modulus of
πσnΓ with respect to d̃σn becomes arbitrarily close to the Euclidean modulus.

We can now define the Cantor set E as follows. For a given t ∈ (0, 1/2) and n ∈ N,
let I(t), In(t) and σn(t) denote respectively the sets I and In and the weight σn
constructed above. For all j ∈ N, let tj = 2−j−2, observing that L1(I(tj)) = 1−2tj .
Let σ̃j = σnj (tj). By choosing nj sufficiently large, we can guarantee that

L1(Inj (tj) ∩ Inj−1(tj−1)) ≥ (1− 4tj)L1(Inj−1(tj−1))



QUASICONFORMAL GEOMETRY AND REMOVABLE SETS 35

and that modπσ̃jΓ ≤ 2 + 1/j by applying (36) and (37). Inductively choosing nj
in this manner, we have

L1

(
j⋂

i=1

Ini(ti)

)
≥

j∏

i=1

(1− 4ti) =

j∏

i=1

(1− 2−i).

Let E =
⋂∞
j=1 Inj (tj) and let σ = χR2\E , yielding the metric dσ on R2. Then

L1(E) =
∏∞
j=1(1− 2−j) > 0. Moreover, σ ≥ σ̃j for all j ∈ N. This fact, combined

with Theorem 2.6, yields that 2 ≤ modπσΓ ≤ modπσ̃jΓ for all j ∈ N. We conclude
that modπσΓ = 2 = mod Γ.

Let Γ∗ denote the family of paths connecting the bottom and top edges of Q.
It is clear that the function ρ∗ = (1/2)χπσQ is admissible for πσΓ∗ with respect to
the metric d̃σ. Thus modπσΓ∗ = 1/2 = mod Γ∗. By Proposition 4.3, this suffices
to show that d̃σ is reciprocal.

7. Factoring quasiconformal mappings

The goal of this section is to prove Proposition 1.5 and Theorem 1.6. To pre-
pare for this, we first give in Section 7.1 an overview of isothermal quasiconformal
mappings. See [Iko21] for a more complete treatment. Section 7.2 gives the proof
of Proposition 1.5. This is followed by a discussion in Section 7.3 of the problem
of optimizing the distortion constant in Proposition 1.5. Finally, in Section 7.4, we
prove Theorem 1.6.

7.1. Isothermal Parametrizations. LetX be a quasiconformal surface. By The-
orem 6.2 in [Iko21], there exists a complete Riemannian surface Y of constant cur-
vature and a quasiconformal map

ψ : Y → X

with minimal pointwise distortion at almost every point: for every other Riemann-
ian surface Z and quasiconformal map ϕ : Z → X, the inequality

(38)
(
gψ · (gψ−1 ◦ ψ)

)
◦ (ψ−1 ◦ ϕ) ≤ gϕ · (gϕ−1 ◦ ϕ)

holds H2
Z-almost everywhere on Z. Recall that gψ and gψ−1 refer to the minimal

weak upper gradients of ψ and ψ−1, respectively. In this case, we say that (Y, ψ) is
an isothermal parametrization of X. By Theorem 6.2 and Lemma 4.10 of [Iko21],
any isothermal parametrization ψ is quasiconformal with outer dilatation KO(ψ)
at most 4/π and inner dilatation KI(ψ) at most π/2. Also, the pointwise distortion
of ψ is bounded from above by

√
2 H2

Y -almost everywhere.
We elaborate on the meaning of (38) in the case when X = (R2, dN ) for some

norm N . Then we can take Y = R2 and ψ to be a linear map

ψ : R2 → (R2, dN )

such that gψ = L(N ◦ ψ) and gψ−1 = ω(N ◦ ψ)−1. Recall that L and ω denote,
respectively, the maximal and minimal stretching, defined in (6) and (7).

The inequality (38) implies that, for all other linear maps ϕ : R2 → (R2, N), we
have

(39)
L(N ◦ ψ)

ω(N ◦ ψ)
≤ L(N ◦ ϕ)

ω(N ◦ ϕ)
.

In terms of the distortion of a norm defined in (8), the inequality (39) implies that
N ◦ ψ has the smallest possible distortion among such pairs ψ and ϕ. This can be
phrased in terms of the Banach–Mazur distance in convex geometry; see [Rom19]
and [Iko21, Section 4].
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An isothermal parametrization of a quasiconformal surface is essentially unique.
This is also part of the content of Theorem 6.2 of [Iko21], partially quoted here.

Theorem 7.1 ([Iko21]). Let ψ : Y → X be an isothermal parametrization of X,
and ϕ : Z → X a quasiconformal map from a Riemannian surface Z onto X. Then
ϕ is isothermal if and only if ψ−1 ◦ ϕ is a conformal diffeomorphism.

Let N be an admissible reciprocal norm field on R2 that vanishes on the compact
set E ⊂ R2. The following lemma is a consequence of Theorem 4.12 of [Iko21].

Lemma 7.2. The identity map ι : R2 → (R2, dN ) is isothermal if and only if

(40)
L(Nx)

ω(Nx)
≤ L(Nx ◦ ϕ)

ω(Nx ◦ ϕ)

for all ϕ ∈ GL2, for L2-almost every x ∈ R2.

Observe that (40) is satisfied by the norm Nx = ‖·‖∞, and more generally by
any norm Nx whose unit ball is a square [TJ89, Proposition 37.6]. Thus Lemma 7.2
has the following corollary.

Corollary 7.3. Suppose that N is reciprocal and that the unit ball of Nx is a
square for L2-almost every x ∈ R2. Then the identity map ι : R2 → (R2, dN ) is
isothermal.

7.2. Proof of Proposition 1.5. Recall that we are assuming thatN is a reciprocal
norm field such that πN : Ω → (Ω, dN ) is isothermal, and that N is continuous
outside the set E = {x ∈ Ω : Nx = 0}.

Let G be a complete Riemannian norm field on Ω of constant Gaussian curvature
−1 or 0, which exists by the classical uniformization theorem. This norm field is of
the form G = σ ‖·‖2 for some smooth positive function σ. Consider the norm field

M = χΩ\E
σ

ω(N)
N + χEG.

The function 1/ω(N) is continuous in Ω \E due to the continuity of N outside E.
The distortion bound on N implies that M is a lower semicontinuous norm field
satisfying G ≤M ≤ HG everywhere.

Let d̂ = dM denote the distance induced by M . Then

dG ≤ d̂ ≤ HdG,
so the identity map P = πM : (Ω, dG) → (Ω, d̂) satisfies (3) and in particular is
H-bi-Lipschitz. Lemma 3.5 states that the metric differential of P coincides with
M L2-almost everywhere.

The proof is complete after we show that ι̂ = πN ◦ P−1 is 1-quasiconformal.
Recall that the metric derivatives of πN and P coincide with N andM , respectively.
The 1-quasiconformality is equivalent to proving that for L2-almost every x ∈ Ω,
the distortion of the identity map from (R2,Mx) to (R2, Nx) equals one L2-almost
everywhere [Iko21, Corollary 5.3].

Observe that, by the change of variables formula Lemma 3.6 and the Lusin’s
Condition (N−1) of πN , the set E has zero L2-measure, so we only need to check
the pointwise distortion in the complement of E. Here the claim is immediate, since
Mz = σ(z)Nz/ω(Nz) for every z ∈ Ω \ E. We conclude that ι̂ is 1-quasiconformal.

7.3. Remarks on optimal distortion. We discuss the question of when the op-
timal constant H =

√
2 in (3) in Proposition 1.5 can be achieved. We recall that

any planar quasiconformal mapping f : Ω → Ω̂ is a solution of the Beltrami equa-
tion fz = µfz, where µ : Ω → C is a measurable function satisfying ‖µ‖∞ < 1.
Conversely, the measurable Riemann mapping theorem provides a homeomorphic
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solution to the Beltrami equation for any such µ. The function µ is called the
Beltrami coefficient. Geometrically, the choice of a Beltrami coefficient corresponds
to the choice of a measurable ellipse field on Ω modulo rescaling of the ellipses. See
Chapter 5 of [AIM09] for an overview of the topic.

Given a reciprocal norm field N̂ on a domain Ω̂ ⊂ R2, one obtains an ellipse
field on Ω̂ by associating to each norm N̂x its distance ellipse, that is, the unique
ellipse E ⊂ BN̂x(0, 1) having minimal λ ≥ 1 such that BN̂x(0, 1) ⊂ λE . This in turn
gives a Beltrami coefficient µN̂ corresponding to N̂ . We refer the reader to [Iko21,
Section 4] for more details.

This choice of ellipse field also determines an underlying Riemannian structure
on the metric space (Ω̂, dN̂ ). A consequence of the classical slit domain uni-
formization theorem [AS60, Section III.4] and [Iko21, Theorem 1.3] is the exis-
tence of a domain Ω ⊂ R2 and a locally quasiconformal map ψ : Ω → Ω̂ such
that f̂ = πN̂ ◦ ψ is isothermal. Consider the distance d(x, y) = dN̂ (f̂(x), f̂(y))

on Ω and the norm field N = N̂ ◦ Dψ. Then the identity map ι : Ω → (Ω, d)
is isothermal and the metric differential of ι exists and equals N L2-almost ev-
erywhere. If the norm field N obtained in this manner is continuous and non-zero
outside E = ψ−1

(
{x ∈ Ω̂ : N̂x = 0}

)
, then Proposition 1.5 now holds with constant

H =
√

2 for the space (Ω, d) and hence the original space (Ω̂, dN̂ ) as well.
The question of when the norm field N is continuous, in turn, depends upon the

regularity of the map ψ. In fact, if ψ is C1-smooth in Ω and N̂ is continuous, then
N is continuous and non-zero outside E. Since the map ψ arises as a solution to
the Beltrami equation, this leads to the question of regularity of solutions to the
Beltrami equation. Indeed, if we consider a domain U compactly contained in Ω̂,
the restriction of ψ−1 to U solves the Beltrami equation induced by µN̂ |U . The
C1-smoothness of ψ in U is known to hold, for example, when µN̂ |U is C1-smooth,
locally Hölder continuous [AIM09, Theorem 15.0.7] or inW 1,p

loc (U) for a large enough
p > 1 depending on the L∞-norm of µN̂ |U [BCO19, Proposition 4].

Solutions of the Beltrami equation for µN̂ , even when N̂ is a continuous Riemann-
ian norm field, need not always be C1-smooth. In the following, we use complex
notation z = z1+iz2 to denote the point (z1, z2) ∈ R2 and z = z1−iz2 to denote the
complex conjugate of z. See Section 2.4 of [AIM09] for a brief overview of complex
notation. The following example is based on Section 15.1 of [AIM09]. Let

µ(z) =
z

z(1 + log ‖z‖22)

and consider the continuous Riemannian norm field N̂ on Ω̂ = B‖·‖2(0, e−1/2) de-
fined by N̂z(v) = ‖v + µ(z)v‖2. Then µ(z) = µN̂z , where µN̂z is the Beltrami
coefficient corresponding to the N̂ as described earlier in this remark. Even though
N̂ is continuous, every solution for the Beltrami equation for µN̂z = µ(z) has a
discontinuous derivative at the origin. This is seen by considering the particular
solution g(z) = −z log ‖z‖22 and noticing that the differential Dg is discontinuous
at the origin. It is enough to check this property for g since, by the Stoïlow factor-
ization theorem [AIM09, Theorem 5.5.1], every other quasiconformal solution is of
the form Ψ ◦ g for some conformal diffeomorphism Ψ.

For more general norm fields, we have the additional complexity that µN̂ can
be smooth even though N̂ is not. For example, consider the continuous norm field
N̂ defined by N̂z(v) =

∥∥ei‖z‖2v
∥∥
∞. Since the supremum norm is not C1-smooth in

R2 \{0}, we see that N̂ is not C1-smooth, for example by considering the basepoint
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z = π/4 and the vector v = 1, even though µN̂ = 0. The identity µN̂ = 0 follows
from Corollary 7.3.

7.4. Proof of Theorem 1.6. In this section, we present the construction used
to prove Theorem 1.6, namely of a quasiconformal surface whose isothermal pa-
rametrization cannot be factored as a bi-Lipschitz mapping postcomposed with a
quasiconformal mapping of smaller distortion. We begin by introducing the nota-
tion and parameters involved in Section 7.4.1. We develop various properties of
this construction in the following subsections, culminating with the proof of Theo-
rem 1.6 in Section 7.4.6.

7.4.1. Notation. Let us introduce the notation used in our construction. Our first
task is to construct a sequence of nested Cantor sets, denoted by K1,K2, . . . and
satisfying K1 ⊃ K2 ⊃ · · · . There are two intermediate steps used to obtain the
sets Ki. First, we define sets Eji for all i, j ∈ N, j ≥ i, to serve as base collections
of squares from which the Cantor sets are taken. Each set Eji is the union of a
collection of congruent closed squares Qji (k, l) that covers almost all of [0, 1]2. The
main feature of our construction is that the squares Qji (k, l) have the standard
non-rotated alignment for odd values of i, while the square Qji (k, l) are aligned
diagonally for even values of i.

In the second intermediate step, we define inductively

F ji = Eji ∩ F ji−1 ∩ F j−1
i ∩ [0, 1]2

for all i, j ∈ N, j ≥ i, with the convention that F j0 = F i−1
i = [0, 1]2 for all i, j. By

taking Fi =
⋂
j F

j
i , we obtain a collection of nested Cantor sets. However, to obtain

Theorem 1.6, we need the further property that the intersection of the Cantor sets
is small. For this reason, we later define Ki to be a subset of Fi with the property
that diamKi → 0 as i→∞.

In the following, let I = J = [0, 1] and let Q = I × J = [0, 1]2. We identify
I with the set [0, 1] × {0} and J with the set {0} × [0, 1]. Let π1 denote the
standard projection map from R2 onto the first coordinate axis, and let π2 denote
the standard projection map from R2 onto the second coordinate axis.

As mentioned above, the even-numbered Cantor sets are formed from squares
that are rotated by π/4 from the standard alignment. LetQ∗ denote the square with
vertices (1/2,−1/2), (3/2, 1/2), (1/2, 3/2), and (−1/2, 1/2). Let I∗ = J∗ = [0,

√
2].

We also identify I∗ with the set [0,
√

2] × {0} and J∗ with the set {0} × [0,
√

2].
Let ϕ : R2 → R2 be the orientation-preserving isometry that maps [0,

√
2]2 onto Q∗

and satisfies ϕ(0, 0) = (1/2,−1/2). Explicitly,

ϕ(x, y) = (1/2,−1/2) +
1√
2

(x− y, x+ y).

Thus ϕ(I∗×J∗) = Q∗. Next, let π∗1 denote the projection map from Q∗ onto ϕ(I∗),
and let π∗2 denote the projection map from Q∗ onto ϕ(J∗). Explicitly, π∗1(x, y) =
ϕ(π1(ϕ−1(x, y)), 0) and π∗2(x, y) = ϕ(0, π2(ϕ−1(x, y))).

The definition of the sets Eji involves three sets of parameters: εji > 0, N j
i ∈ N,

and aji ∈ N. A short explanation of these parameters is the following. The first
parameter εji gives an upper bound on the proportion of area lost when passing
from one step of the construction to the next. The second parameter N j

i gives the
number of subdivisions of the initial interval I or I∗ that are made when forming
the squares that comprise Eji . The final parameter aji corresponds to the side length
of these squares. The precise relation is that the side length of a square in Eji is
(1− 2(aji )

−1)/N j
i for i odd and

√
2(1− 2(aji )

−1)/N j
i for i even.
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1

Nj
i

1

ajiN
j
i

(
1− 2

aji

)
1

Nj
i

Figure 1. A square Qji (k, l) ⊂ Eji for i odd and the intersection
Qji (k, l)∩Eji+1, shaded gray. The large outer square is Iji (k)×Jji (l).

7.4.2. Constructing the sets Eji . For two pairs of indices (i, j) and (i′, j′), we say
that (i, j) � (i′, j′) if j < j′ or if j = j′ and i ≤ i′. The relation � gives an ordering
on the set of indices (i, j). We consider the sets Eji as being traversed in this order.
We also write (i, j) ≺ (i′, j′) if j < j′ or if j = j′ and i < i′. Recall that here and
throughout this proof we consider only those indices i, j ∈ N for which j ≥ i. This
ordering is illustrated in Figure 2.

We first choose the parameters εji > 0 so that they satisfy
∏
i,j(1 − ε

j
i ) ≥ 1/2.

The factors in the product are traversed according to the ordering on {(i, j)} just
defined.

The sets Eji are defined for all i, j ∈ N satisfying j ≥ i in the following way.
Assume for the moment that we have made suitable choices of N j

i , a
j
i ∈ N. In the

case that i is odd, we divide I into N j
i equal subintervals Iji (k) = [(k−1)/N j

i , k/N
j
i ]

and J into N j
i equal subintervals Jji (l) = [(l−1)/N j

i , l/N
j
i ]. If i is even, we divide I∗

into N j
i equal subintervals Iji (k) = [

√
2(k − 1)/N j

i ,
√

2k/N j
i ] and J∗ into N j

i equal
subintervals Jji (l) = [

√
2(l − 1)/N j

i ,
√

2l/N j
i ]. This yields a collection of squares

Iji (k)×Jji (l), where k, l ∈ {1, . . . , N j
i }. If i is odd, let Qji (k, l) be the square of side

length (1− 2(aji )
−1)/N j

i with the same center and alignment as Iji (k)× Jji (l). If i
is even, define Qji (k, l) to be the square of side length

√
2(1−2(aji )

−1)/N j
i with the

same center and alignment as ϕ(Iji (k)× Jji (l)). In this case, the square Qji (k, l) is
contained in Q∗ and is aligned diagonally. Let

Eji =
⋃

k,l

Qji (k, l).

The square Qji (k, l), for i odd, is given explicitly by
[(

k − 1 +
1

aji

)
1

N j
i

,

(
k − 1

aji

)
1

N j
i

]
×
[(

l − 1 +
1

aji

)
1

N j
i

,

(
l − 1

aji

)
1

N j
i

]
.

Let vji (k, l, 1), vji (k, l, 2), vji (k, l, 3), vji (k, l, 4) denote the four vertices of Qji (k, l), tra-
versed counterclockwise from the bottom left. Let wji (k, l) denote the center point
of Qji (k, l).
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E1
1 → E2

1 E3
1 · · ·

↓ ↗ ↓
E2

2 E3
2 · · ·
↓
E3

3 · · ·
. . .

Figure 2. The sets Eji as ordered by �.

Similarly, the square Qji (k, l), for i even, is the image under ϕ of the square

(41)

[(
k − 1 +

1

aji

) √
2

N j
i

,

(
k − 1

aji

) √
2

N j
i

]
×
[(

l − 1 +
1

aji

) √
2

N j
i

,

(
l − 1

aji

) √
2

N j
i

]
.

Let vji (k, l, 1), vji (k, l, 2), vji (k, l, 3), vji (k, l, 4) denote the four vertices of Qji (k, l),
where vji (k, l, 1) is the image under ϕ of the bottom left vertex of the square in
(41) and the rest are labelled in counterclockwise order. Let wji (k, l) denote the
center point of Qji (k, l).

The values of N j
i and aji are chosen inductively using the ordering �. Let N1

1 = 2
and choose a1

1 ∈ N so that L2(E1
1) ≥ 1 − ε1

1. For the inductive step, assume that
we have chosen N j′

i′ and aj
′

i′ for some pair (i′, j′), and that

L2


 ⋂

(i′′,j′′)�(i′,j′)

Ej
′′

i′′


 ≥

∏

(i′′,j′′)�(i′,j′)

(1− εj
′′

i′′ ).

Let (i, j) denote the pair immediately succeeding (i′, j′).
Define now N j

i = 2aj
′

i′N
j′

i′ . We then choose aji so that

L2


 ⋂

(i′′,j′′)�(i,j)

Ej
′′

i′′


 ≥

∏

(i′′,j′′)�(i,j)

(1− εj
′′

i′′ ).

This can be done because Eji can be made to have arbitrarily large area in Q or
Q∗, respectively, by making aji sufficiently large.

We make the following observation. Fix (i, j) and consider a square Qji (k, l). For
all (i′, j′) such that (i, j) ≺ (i′, j′) and m,n ∈ {1, . . . , N j′

i′ }, the square Ij
′

i′ (m) ×
Jj
′

i′ (n), if i′ is odd, or ϕ(Ij
′

i′ (m)×Jj
′

i′ (n)), if i′ is even, is either entirely contained in
Qji (k, l), has interior disjoint from Qji (k, l), or intersects Q

j
i (k, l) in a triangle whose

vertices are three of the vertices of Ij
′

i′ (m)× Jj
′

i′ (n).
We also observe a uniformity to how the squares are distributed. For each i, j, k, l,

we divide the square Qji (k, l) into four triangles whose vertices are two adjacent ver-
tices of Qji (k, l) and the midpoint of Qji (k, l). Denote these by T ji (k, l, 1), T ji (k, l, 2),
T ji (k, l, 3), T ji (k, l, 4), where T ji (k, l,m) contains the edge [vji (k, l,m), vji (k, l,m+1)],
taking vji (k, l, 5) = vji (k, l, 1).

Lemma 7.4. Let i, j, i′, j′ ∈ N, where (i, j) ≺ (i′, j′). For all k, l ∈ {1, . . . , N j
i }

and m ∈ {1, . . . , 4} satisfying T ji (k, l,m) ⊂ Q, the sets T ji (k, l,m) ∩ Ej
′

i′ are all
congruent.

Proof. This proof depends on the property that 2ajiN
j
i divides N j′

i′ . As a result,
squares at different levels of the construction intersect nicely. We consider the case
when i is odd.
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First, suppose that i′ is also odd. For each m ∈ {1, . . . , 4}, consider the edge
eji (k, l,m) as defined above. We have π1(vji (k, l, 1)) = π1(vji (k, l, 4)) = k1(k, l)/N j′

i′

and π1(vji (k, l, 3)) = π1(vji (k, l, 2)) = k3(k, l)/N j′

i′ , where

k1(k, l) =
(ajik − aji + 1)N j′

i′

ajiN
j
i

and k3(k, l) =
(ajik − 1)N j′

i′

ajiN
j
i

.

Similarly, we have π2(vji (k, l, 2)) = π2(vji (k, l, 1)) = k2(k, l)/N j′

i′ and π4(vji (k, l, 3)) =

π4(vji (k, l, 4)) = k4(k, l)/N j′

i′ , where

k2(k, l) =
(aji l − aji + 1)N j′

i′

ajiN
j
i

and k4(k, l) =
(aji l − 1)N j′

i′

ajiN
j
i

.

Observe that ki(k, l) ∈ N for all i ∈ {1, . . . , 4}. We have then

Qji (k, l) = [k1(k, l)/N j′

i′ , k3(k, l)/N j′

i′ ]× [k2(k, l)/N j′

i′ , k4(k, l)/N j′

i′ ].

We conclude from this that the intersection Qji (k, l) ∩Ej
′

i′ is precisely the union of
the squares

{Qj
′

i′ (k
′, l′) : k2(k, l) + 1 ≤ k′ ≤ k4(k, l), k1(k, l) + 1 ≤ l′ ≤ k3(k, l)}.

We also observe that

|k3(k, l)− k1(k, l)| = |k4(k, l)− k2(k, l)| = (aji − 2)N j′

i′

ajiN
j
i

.

Thus the sets Qji (k, l) ∩ Ej
′

i′ are congruent for all k, l ∈ {1, . . . , N j
i }. Moreover,

notice that each set Qji (k, l) ∩ Ej
′

i′ is invariant under rotations by π/4 about the
center point wji (k, l). We conclude from this that the sets T ji (k, l,m) ∩ Ej

′

i′ are all
congruent.

Next, suppose that i′ is even. Consider now a triangle T ji (k, l,m). The two
shorter edges of T ji (k, l,m) are the edges of a rectangle Rji (k, l,m) of side length√

2(aji − 2)/(ajiN
j
i ). To keep the exposition more manageable, we write out the

argument only for T ji (k, l, 1). We compute

ϕ−1(vji (k, l, 1)) =

(
(ajik + aji l − 2aji + 2)

√
2

2ajiN
j
i

,− (−ajik + aji l + ajiN
j
i )
√

2

2ajiN
j
i

)

ϕ−1(vji (k, l, 2)) =

(
(ajik + aji l − aji )

√
2

2ajiN
j
i

,
(−ajik + aji l − aji + 2 + ajiN

j
i )
√

2

2ajiN
j
i

)
.

Comparing this with (41) and using the property that 2ajiN
j
i divides N j′

i′ , we have

ϕ−1(Rji (k, l,m)) =

[
k1(k, l)

√
2

N j′
i′

,
k3(k, l)

√
2

N j′
i′

]
×
[
k2(k, l)

√
2

N j′
i′

,
k4(k, l)

√
2

N j′
i′

]

for some k1(k, l), . . . , k4(k, l) ∈ N satisfying

|k3(k, l)− k1(k, l)| = |k4(k, l)− k2(k, l)| = (aji − 2)N j′

i′

2ajiN
j
i

.

The intersection Rji (k, l, 1) ∩ Ej
′

i′ is the union of the squares

{Qj
′

i′ (k
′, l′) : k2(k, l) + 1 ≤ k′ ≤ k4(k, l), k1(k, l) + 1 ≤ l′ ≤ k3(k, l)}.

Thus the sets Rji (k, l, 1) ∩ Ej
′

i′ are all congruent, and by symmetry it follows that
the sets T ji (k, l, 1) ∩ Ej

′

i′ are all congruent as well.
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The case when i is even is similar, and its proof is omitted. �

7.4.3. Constructing the Cantor sets. For all i, j, let F j0 = Q and F i−1
i = Q. Define

now
F ji = Eji ∩ F ji−1 ∩ F j−1

i

for all j ≥ i. Observe that
⋂

(i′′,j′′)�(i,j)E
j′′

i′′ ⊂ F ji , so we have L2(F ji ) ≥ 1/2 for all
i, j. Next, let Fi =

⋂
j≥i F

j
i .

Let K0 = R2. For each i ≥ 1, pick inductively a square Qi = Qii(ji, ki) with the
property that Qi ⊂ Qi−1. Let

Ki = Fi ∩Qi.
From Lemma 7.4, it follows that L2(Ki) = L2(Fi)/(N

i
i )

2. Moreover, we have that
diamKi → 0 as i→ 0, and in particular that

⋂
i Fi is a single point set.

7.4.4. Dense networks of paths. The following portion of the argument relates to
having a “dense network of paths” at every stage.

We define the following subset of Ki. If i is even, let

Hi = Ki ∩ π−1
2 (I \ π2(Ki+1)).

If i is odd, let
Hi = Ki ∩ (π∗2)−1(I∗ \ π∗2(Ki+1)).

For example, in Figure 1 representing the case where i is odd, a point x ∈ Ki ∩
Qji (k, l) belongs to Hi if the line t 7→ x + (t, t) does not intersect any of the gray
boxes.

Lemma 7.5. For every point x ∈ Ki+1 and r > 0, the set Hi ∩ B‖·‖2(x, r) has
positive L2-measure.

Proof. In the first case, we assume that i is even, and hence that i + 1 is odd.
Let x ∈ Ki+1 and r > 0. Consider a square Qji+1(k, l) containing x for some j
sufficiently large so that Qji+1(k, l) ⊂ B(x, r/3) and such that Qji+1(k, l) ⊂ Qi+1.
Pick a horizontal edge S of Qji+1(k, l) whose interior is contained in int(Qi+1).

Consider now the set Ej+1
i . Subdivide S into (aji+1 − 2)N j+1

i /(aji+1N
j
i+1) con-

gruent subintervals. Each subinterval is the diagonal of a square ϕ(Ij+1
i (k′) ×

Jj+1
i (l′)), with corresponding square Qj+1

i (k′, l′) ⊂ Ej+1
i . From such a square

Qj+1
i (k′, l′), we may extract a triangle T j+1

i (k′, l′,m′), as defined prior to the state-
ment of Lemma 7.4, whose interior does not intersect Eji+1. Observe further that
T j+1
i (k′, l′,m′) ⊂ Qi, so that

T j+1
i (k′, l′,m′) ∩ Fi = T j+1

i (k′, l′,m′) ∩Ki.

As a consequence of Lemma 7.4, we have that

L2(T j+1
i (k′, l′,m′) ∩ Fi) =

L2(Fi)

4(N j+1
i )2

.

Moreover, T j+1
i (k′, l′,m′) lies in the neighborhood of Qji+1(k, l) of radius

1/N j+1
i ≤ diamQji+1(k, l) < 2r/3,

so T j+1
i (k′, l′,m′) ⊂ B‖·‖2(x, r). Also, we have that

int(T j+1
i (k′, l′,m′)) ∩ Fi ⊂ Hi.

This verifies the claim.
The case that i is even and i+ 1 is odd is similar, and we omit the details. �
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Lemma 7.6. Let x ∈ π1(Ki) be a Lebesgue density point of π1(Ki), where i ∈ N
is odd. Let δ > 0, and let t0 > 0 be such that

L1(π1(Ki) ∩ (x, x+ t))

t
≥ 1− δ

for all t ∈ (0, t0). Then for all y ∈ π1(Ki) satisfying |y − x| < 2δt,

L1(π1(Ki) ∩ (y, y + t))

t
≥ 1− 2δ.

The same result holds with π2 instead of π1. If i is even, the corresponding result
holds for π∗1 and π∗2 , identifying I∗ and J∗ with the interval [0,

√
2].

Proof. The first claim follows from the relationship

L1(π1(Ki) ∩ (y, y + t)) ≥ L1(π1(Ki) ∩ (x, x+ t))− |x− y|.
The other claims follow from a similar inequality. �

7.4.5. Defining the metric on R2. Define a norm field N on R2 by the formula

Nx =

{
2−i/2‖ · ‖1 if x ∈ Ki \Ki+1, i even,
2−(i−1)/2‖ · ‖∞ if x ∈ Ki \Ki+1, i odd.

The norm field N is admissible in the sense of Definition 3.1, in particular being
lower semicontinuous, and induces a metric d on R2 as described in Section 3.
Observe that N vanishes at a single point. Theorem 1.3 and Corollary 7.3 imply
the following.

Proposition 7.7. The identity map ι : (R2, ‖·‖2) → (R2, d) is an isothermal qua-
siconformal mapping.

7.4.6. Proof of Theorem 1.6. We suppose to the contrary that there is a metric
space (X̂, d̂) such that a factorization ι = ι̂ ◦ P as in the statement of Theorem 1.6
exists, that is, that P is bi-Lipschitz and that ι̂ has distortion H(ι̂) <

√
2. Since ι

is Lipschitz, it follows that ι̂ is also Lipschitz.
By considering the metric d̂(P (x), P (y)) on R2, we assume without loss of gen-

erality that X̂ = R2 and that ι̂ and P are each the identity map on R2. Let N̂
denote the metric derivative of the map P : (R2, ‖·‖2)→ (R2, d̂), cf. Definition 2.2.

By assumption, the identity map ι̂ : (R2, d̂) → (R2, d) is quasiconformal with
H(ι̂) <

√
2. Moreover, since P is Lipschitz, there exists C > 0 such that N̂x ≤

C ‖·‖1 for every x ∈ R2. Let v = (1, 0) and w = (1/
√

2, 1/
√

2), and let a =

H(ι̂)/
√

2 < 1. It suffices to show that, for all i ≥ 0 and almost every x ∈ Ki \Ki+1,

(42) N̂x(w) ≤ Cai if i is even,
N̂x(v) ≤ Cai if i is odd.

This provides a contradiction. Indeed, given that P is bi-Lipschitz, N̂x(w) and
N̂x(v) are bounded from below for all x ∈ R2 by some constant C ′ > 0.

Observe that, when i is even, Nx(w) =
√

2Nx(v) for all x ∈ Ki \Ki+1. Similarly,
when i is odd, Nx(v) =

√
2Nx(w). It follows from Theorem 5.2 of [Iko21] that

the pointwise distortion of ι̂ coincides with the distortion of the identity map from
(R2, N̂x) to (R2, Nx) for almost every x ∈ R2. As a consequence, for almost every
x ∈ Ki \Ki+1,

(43) N̂x(v) ≤ aN̂x(w) if i is even,
N̂x(w) ≤ aN̂x(v) if i is odd.

We verify (42) by induction on i. The claim is immediate for i = 0, recalling
that K0 = R2. For the inductive step, fix i ≥ 1 and assume that (42) holds for
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almost every x ∈ R2 \Ki. We show that (42) holds for almost every x ∈ Ki \Ki+1.
Let Ni−1 denote the set of points in Ki−1 \Ki for which (42) or (43) fails. We split
into two cases based upon on whether i is odd or even. The idea is the same in
each, but the bookkeeping requires separate statements.

Case 1. Assume that i is odd. By the inductive hypothesis, we have N̂x(v) ≤
aN̂x(w) ≤ Cai for every x ∈ (Ki−1 \Ki) \Ni−1, where Ni−1 has L2-measure zero.
We claim that N̂x(v) ≤ Cai for almost every x ∈ Ki\Ki+1. Assume to the contrary
that there exists a set G ⊂ Ki \Ki+1 of positive measure and a constant b > 0 such
that N̂x(v) ≥ (C + b)ai for all x ∈ G.

For all t ∈ [0, 1], let γt : I → R2 be the path defined by γt(s) = (s, t). According
to Lemma 2.5, for every path γt and every subinterval I ′ ⊂ I,

`d̂(γt|I′) =

∫

I′
N̂γt(s)(v) dL1.

Consider now the interval [s0, s0 + h] for some s0 ∈ (0, 1) and h ∈ (0, 1 − s0).
Differentiating, we have for L2-almost every (s0, t) ∈ G that

lim
h→0

d̂(γt(s0), γt(s0 + h))

h
= lim
h→0

`d̂(γt|[s0,s0+h])

h
≥ (C + b)ai.

In particular, for almost every x ∈ G, there exists r0 > 0 such that

(44) d̂(x, x+ rv) ≥ (C + b/2)air

for all r ∈ (0, r0).
On the other hand, consider now a point x ∈ G such that π∗1(x) is a Lebesgue

density point of π∗1(Ki−1) and π∗2(x) is a Lebesgue density point of π∗2(Ki−1). Note
that by Fubini’s theorem, L2-almost every point in G has this property. Let δ > 0
and let t0 = t0(δ) be such that the hypothesis in Lemma 7.6 is satisfied for both
the point π∗1(x) and the point π∗2(x).

For all ε > 0, let H(x, ε) be the set comprising those points y ∈ Hi−1∩B‖·‖2(x, ε)
for which

H1
‖·‖2(Ni−1 ∩ π−1

2 (π2(y))) = 0.

Recall that the set Hi−1 is defined in Section 7.4.4. By Lemma 7.5, the set Hi−1 ∩
B‖·‖2(x, ε) has positive L2-measure. SinceNi−1 has L2-measure zero, an application
of Fubini’s theorem shows that H(x, ε) is a full measure subset of Hi−1∩B‖·‖2(x, ε).
Let r ∈ (0, t0) and ε ∈ (0, 2δr).

Consider a point y ∈ H(x, ε). Let γy : [0, r] → R2 be the path defined by
γy(s) = y + sv. Lemma 2.5 implies that

`d̂(γy) =

∫

[0,r]

N̂γy(s)(v) dL1(s),

and the definition of H(x, ε) implies that

(45) N̂z(v) ≤ Cai

for H1
‖·‖2 -almost every z ∈ Ki−1 ∩ |γy|.

Next, we estimate the H1
‖·‖2-measure of Ki−1 ∩ |γy|. To this end, observe that

the path γ1
y : [0, r] → R, γ1

y(s) = y + sw/
√

2, intersects Ki−1 in a set congruent to
π∗1(Ki−1) ∩ π∗1(|γ1

y |). Similarly, the path γ2
y : [0, r]→ R, γ2

y(s) = y + sw/
√

2, where
w = (1/

√
2,−1/

√
2), intersects Ki−1 in a set congruent to π∗2(Ki−1) ∩ π∗2(|γ2

y |).
Since |π∗m(y)− π∗m(x)| < 2δr, Lemma 7.6 gives, for m ∈ {1, 2},

(46)
H1
‖·‖2(Ki−1 ∩ |γmy |)

r/
√

2
≥ 1− 2δ.
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We combine this with the following observation: for any measurable sets E1, E2 ⊂
[0, r] satisfying |Ej | ≥ (1 − εj)r for some εj ∈ (0, 1), j ∈ {1, 2}, the diagonal path
γ : [0, r] → [0, r]2 defined by γ(s) = (s, s) intersects E1 × E2 in a set of length at
least

√
2(1− ε1− ε2)r. Since Ki−1 is constructed as a product set relative to which

γy is a diagonal path, we conclude from (46) that

(47)
H1
‖·‖2(Ki−1 ∩ |γy|)

r
≥ 1− 4δ.

Using (45) and the fact that N̂z(v) ≤ C for all z ∈ R2, the inequality (47) gives

d̂(y, y + rv) ≤ (1− 4δ)Cair + 4δCr.

Next, by making the initial choice of δ sufficiently small, we have

d̂(y, y + rv) ≤ (1 + δ)Cair.

From this and the relationship d̂ ≤ Cd‖·‖1 ≤
√

2Cd‖·‖2 , it follows that

d̂(x, x+ rv) ≤ 2
√

2Cε+ (1 + δ)Cair.

Since ε ∈ (0, 2δr) is arbitrary, we obtain

d̂(x, x+ rv) ≤ (1 + δ)Cair.

Since this estimate holds for L2-almost every x ∈ G, this contradicts our earlier
statement (44) when δ is sufficiently small. We conclude that N̂x(v) ≤ Cai for
almost every x ∈ Ki \Ki+1.

Case 2. We now consider the case that i is even. The idea is the same as in the
first case, but now everything is rotated by π/4. By the inductive hypothesis, we
have that N̂x(w) ≤ aN̂x(v) ≤ Cai for every x ∈ (Ki−1 \Ki) \Ni−1. We claim that
N̂x(w) ≤ Cai for almost every x ∈ Ki \Ki+1. Assume to the contrary that there
exists a set G ⊂ Ki \ Ki+1 of positive measure and a constant b > 0 such that
N̂x(w) ≥ (C + b)ai for all x ∈ G.

For all t ∈ J∗, let γt : I∗ → R2 be the path defined by γt(s) = ϕ(s, t). Consider
as before the interval [s0, s0 + h] for some s0 ∈ (0,

√
2) and h ∈ (0,

√
2 − s0).

Differentiating, we have that

lim
h→0

`d̂(γt|[s0,s0+h])

h
≥ (C + b)ai.

In particular, for L2-almost every x ∈ G, there exists r0 > 0 such that

(48) d̂(x, x+ rw) ≥ (C + b/2)air

for all r ∈ (0, r0).
On the other hand, consider a point x ∈ G such that π1(x) is a Lebesgue density

point of π1(Ki−1) and π2(x) is a Lebesgue density point of π2(Ki−1). Let δ > 0
and let t0 = t0(δ) be the corresponding value in Lemma 7.6. For all ε > 0, define
the set H(x, ε) as the set of points y ∈ Hi−1 ∩B‖·‖2(x, ε) for which

H1
‖·‖2(Ni−1 ∩ (π∗2)−1(π∗2(y))) = 0.

As before, H(x, ε) is a full measure subset of Hi−1 ∩B‖·‖2(x, ε). Let r ∈ (0, t0) and
ε ∈ (0, 2δr).

For all y ∈ H(x, ε), define the path γy : [0, r] → R2 by γy(s) = y + sw. Recall
from Lemma 2.5 that

`d̂(γy) =

∫

[0,r]

N̂γy(s)(w) dL1.
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Moreover, N̂z(w) ≤ Cai for H1
‖·‖2-almost every z ∈ Ki−1 ∩ |γy|. Arguing as in the

first case, we obtain the inequality

d̂(y, y + rw) ≤ (1− 4δ)Cair + 2δCr.

Next, by taking δ sufficiently small, we then have d̂(y, y + rw) ≤ (1 + δ)Cair. As
before, since ε ∈ (0, 2δr) is arbitrary,

d̂(x, x+ rw) ≤ (1 + δ)Cair,

which contradicts (48) for sufficiently small δ > 0. We conclude that N̂x(w) ≤ Cai
for almost every x ∈ Ki \Ki+1.
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Abstract: We extend the classical Carathéodory extension theorem to quasiconformal Jordan domains
(Y , dY ). We say that a metric space (Y , dY ) is a quasiconformal Jordan domain if the completion Y of (Y , dY )
has �nite Hausdor� 2-measure, the boundary ∂Y = Y \ Y is homeomorphic to S1, and there exists a homeo-
morphism ϕ : D→ (Y , dY ) that is quasiconformal in the geometric sense.
We show that ϕ has a continuous, monotone, and surjective extension Φ : D → Y. This result is best possi-
ble in this generality. In addition, we �nd a necessary and su�cient condition for Φ to be a quasiconformal
homeomorphism. We provide su�cient conditions for the restriction of Φ to S1 being a quasisymmetry and
to ∂Y being bi-Lipschitz equivalent to a quasicircle in the plane.

Keywords: quasiconformal; metric surface; Carathéodory; Beurling–Ahlfors

MSC: Primary 30L10, Secondary 30C65, 28A75, 51F99.

1 Introduction
Let (X, dX) be a metric space with locally �nite Hausdor� 2-measure. If X is also homeomorphic to a 2-
manifold, we say that (X, dX) is a metric surface. A homeomorphism ϕ : (X, dX) → (Y , dY ) between metric
surfaces is quasiconformal if there exists K ≥ 1 such that for all path families Γ,

K−1mod Γ ≤ modϕΓ ≤ Kmod Γ , (1.1)

wheremod Γ is the conformal modulus of Γ, see Section 2.3.
We say that ametric surface (Y , dY ) is ametric Jordan domain if themetric completion Y is homeomorphic

to the closed unit disk D, the boundary ∂Y = Y \ Y is homeomorphic to the unit circle S1, and the Hausdor�
2-measure of Y is �nite.

A metric Jordan domain is a quasiconformal Jordan domain if there exists a quasiconformal homeomor-
phism ϕ : D → (Y , dY ). A metric Jordan domain is a quasiconformal one if and only if (Y , dY ) is reciprocal
as introduced in [18, Theorem 1.4]; see De�nition 2.5. This uses the facts that H2

Y (Y) < ∞ and that ∂Y is a
non-trivial continuum.

In general, it is not true that the completion Y of a quasiconformal Jordan domain is a quasiconformal im-
age of the closedunit diskD.We illustrate thiswith an example after Theorem 1.1. Contrast thiswith the classi-
cal casewhen Y is a Jordan domain in the planeR2. Then any 1-quasiconformal homeomorphism ϕ : D→ Y,
i.e., any Riemann map from the unit disk onto Y extends to a homeomorphism Φ : D→ Y by a result known
as the Carathéodory extension theorem [9, Chapter I, Theorem 3.1]. In fact, the extension still satis�es (1.1)
with K = 1. Additionally, if ϕ : D → Y is K-quasiconformal for some K ≥ 1, it still has a homeomorphic
extension to the boundary.

*Corresponding Author: Toni Ikonen: Department of Mathematics and Statistics,University of Jyvaskyla, Jyvaskyla, Finland,
E-mail: toni.m.h.ikonen@jyu.�
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1.1 Carathéodory’s theorem

We prove the following generalization of the classical Carathéodory extension theorem of quasiconformal
maps.

Theorem 1.1. Let ϕ : D → Y be a quasiconformal map onto a quasiconformal Jordan domain. Then there
exists an extension Φ : D→ Y of ϕ that is surjective, monotone and Φ(S1) = ∂Y.

Here we say that a map is monotone if it is continuous and the preimage of every point is a continuum,
i.e., a compact and connected set.

The map Φ might fail to be a homeomorphism. As an example, consider the length space X homeomor-
phic to R2 obtained by collapsing the Euclidean square [0, 1]2 in R2 to a point. Let π : R2 → X denote the
associated 1-Lipschitz quotientmap.We de�ne Y = π((1, 2)×(0, 1)). Then ∂Y = π(∂ [1, 2]×[0, 1]). The restric-
tion of π to (1, 2)× (0, 1) is a 1-quasiconformal map, but its extension collapses the arc segment {1}× [0, 1] to
the singleton π([0, 1]2). By considering a Riemannmap f : D→ (0, 1)2, the claim follows by setting ϕ = π ◦ f .

Next, we investigate when the extension in Theorem 1.1 is a quasiconformal homeomorphism. To this
end, for every y ∈ Y and diam Y ≥ R > r > 0, we let Γ(BY (y, r), Y \ BY (y, R); Y) denote the family of paths
joining BY (y, r) to Y \ BY (y, R).

Proposition 1.2. The extension Φ in Theorem 1.1 is quasiconformal if and only if for every y ∈ ∂Y and R > 0
for which Y \ BY (y, R) = ̸ ∅,

lim
r→0+

mod Γ(BY (y, r), Y \ BY (y, R); Y) = 0. (1.2)

Moreover, if (1.2) holds at each y ∈ ∂Y and ϕ is K-quasiconformal, then Φ is K-quasiconformal.

A well-known fact is that if there exists CU > 0 such that for all y ∈ ∂Y and 0 < r < diam ∂Y,

H2
Y (BY (y, r)) ≤ CU r

2, (1.3)

then (1.2) holds; see Lemma 2.8. The condition (1.2) has a close link to the reciprocality condition introduced
in [18]; see De�nition 2.5. The aforementioned example of the collapsed disk [0, 1]2 fails (1.2) at exactly one
point.

It can happen that the extension Φ in Theorem 1.1 is a homeomorphism, but not quasiconformal; see
[14, Example 6.1]. There we have a metric space X for which there exists a 1-Lipschitz homeomorphism
π : R2 → X which is 1-quasiconformal outside a Cantor set K ⊂ [0, 1] × {0}, but π|(0,1)2 does not extend
to a 1-quasiconformal homeomorphism on [0, 1]2. The claim follows by setting Y = π((0, 1)2) and setting
ϕ = π ◦ f for any Riemann map f : D→ (0, 1)2.

1.2 Quasicircles

Consider a quasiconformal Jordan domain Y whose boundary points satisfy the area growth inequality
(1.3). We know from Proposition 1.2 that the extension Φ : D → Y of any quasiconformal homeomorphism
ϕ : D → Y is a quasiconformal homeomorphism. In particular, the boundary map gϕ = Φ|S1 : S1 → ∂Y is a
homeomorphism.

We are especially interested when we can deduce that ∂Y is a quasicircle, i.e., a quasisymmetric image of
S1. We refer the reader to Section 2 for de�nitions.

Theorem 1.3 (Beurling–Ahlfors extension). Suppose that Y is a quasiconformal Jordan domain whose
boundary points satisfy the area growth (1.3).

If ϕ : D → Y is a quasiconformal homeomorphism, then the boundary map gϕ is a quasisymmetry if
and only if ∂Y has bounded turning. If ∂Y has bounded turning, then any quasisymmetry g : S1 → ∂Y is the
boundary map of some quasiconformal map ϕ : D→ Y.



Quasiconformal Jordan Domains | 169

Theorem 1.3 has a parallel in the classical literature. Ahlfors and Beurling proved in [2] that every qua-
sisymmetry g : S1 → S1 is the boundary homeomorphism of some quasiconformal map ϕ : D → D. In fact,
we apply their result in proving that quasisymmetries g : S1 → ∂Y extend like claimed. It is also known that
the boundary homeomorphisms of quasiconformal maps ϕ : D→ D are quasisymmetries. So we also recover
this result with the assumptions of Theorem 1.3.

We now know from Theorem 1.3 that ∂Y is a quasicircle in some situations. We are interested whether
or not ∂Y can be bi-Lipschitz embedded into the plane. We say that a quasicircle Z is planar, or a planar
quasicircle, if there exists a bi-Lipschitz embedding h : Z → R2.

One of themain results obtained in [13] states that a quasicircle is planar if and only if itsAssouad dimen-
sion is strictly less than two, see De�nition 2.10. There are quasicircles for every Assouad dimension between
1 and∞ since Z = (S1, ‖·‖α2) for 0 < α ≤ 1 has Assouad dimension α−1.

Proposition 1.4. Let Y be a quasiconformal Jordan domain. If ∂Y is a quasicircle and the boundary points
satisfy the area growth (1.3), then the Assouad dimension of ∂Y is at most two.

It is not clear if ∂Y in the above statement must be planar. However, if Y is annularly linearly locally
connected (ALLC) and Ahlfors 2-regular, then ∂Y is a planar quasicircle [17, Theorems 8.1 and 8.2]; see [17] for
the proofs and terminology. Quasiconformal Jordan domains satisfying these stronger assumptions appear
in [24] and [3].

We localize these assumptions in the following statement and obtain the same conclusion.

Theorem 1.5. Let Y be a quasiconformal Jordan domain such that ∂Y is a quasicircle and its boundary points
satisfy the area growth (1.3). Then the Assouad dimension of ∂Y is strictly less than two if the following two
conditions are satis�ed for some r0 > 0, C > 0 and λ > 1:

(a) For every y ∈ ∂Y and 0 < 2r < R < r0 and any pair a, b ∈ BY (y, R) \ BY (y, r), there exists a path
|α| ⊂ BY (y, λR) \ BY (y, λ

−1r) containing a and b.
(b) For every z ∈ Y with 0 < r < d(z, ∂Y) ≤ r0,H2

Y (BY (z, r)) ≥ C
−1r2.

In particular, ∂Y is planar.

If (a) holds we say that ∂Y is relatively ALLC and if (b) holds, we say that Y satis�es the Ahlfors lower
bound near ∂Y. The main point of Theorem 1.5 is to only restrict the geometry of Y near the boundary ∂Y.

The relative ALLC guarantees that ∂Y is porous in Y below the given scale r0 (Lemma 5.2). The porosity
allows us to pack many balls in Y, well-disjoint from ∂Y, near all points of ∂Y at all scales below r0. Now the
Ahlfors lower bound, valid for such balls, combined with the upper bound (1.3) allow us to control quantita-
tively the total amount of such non-overlapping balls in a given interval of scales. This quanti�cation allows
us to prove planarity for ∂Y. This idea appears in [3, Lemma 3.12], where the authors prove that a compact set
in an Ahlfors regular space is porous if and only if its Assouad dimension is strictly smaller than the homo-
geneous dimension of the space. A similar argument also works in the setting of Theorem 1.5.

1.3 Outline

In Section 2, we introduce the notations we use and some preliminary results. In Section 3, we prove Theo-
rem 1.1. Theorem 1.3 and Proposition 1.4 are proved in Section 4. Theorem 1.5 is proved in Section 5. Section 6
contains some concluding remarks.
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2 Preliminaries

2.1 Notation

Let (Y , dY ) be ametric space. The open ball centered at a point y ∈ Y of radius r > 0with respect to themetric
d is denoted by BY (y, r). The closed ball is denoted by BY (y, r). We sometimes omit the subscript from dY ,
from BY , and from BY , respectively.

We recall the de�nition of Hausdor� measure. Let (Y , d) be a metric space. For all Q ≥ 0, the Q-
dimensional Hausdor� measure (Hausdor� Q-measure) is de�ned by

HQ
Y (B) =

α(Q)
2Q

sup
δ>0

inf
{ ∞∑

i=1
(diam Bi)Q : B ⊂

∞⋃

i=1
Bi , diam Bi < δ

}

for all sets B ⊂ Y, where α(Q) = π
Q
2
(
Γ
(
Q/2 + 1

))−1. The constant α(Q) is chosen in such a way that Hn
Rn

coincides with the Lebesgue measure Ln for all positive integers.
The length of a path γ : [a, b]→ Y is de�ned as

`d(γ) = sup
n∑

i=1
d(γ(ti−1), γ(ti)),

the supremum taken over all �nite partitions a = t0 ≤ t1 ≤ · · · ≤ tn = b. A path is recti�able if it has �nite
length.

The metric speed of a path γ : [a, b]→ Y at the point t ∈ [a, b] is de�ned as

vγ(t) = lim
h→0+

d(γ(t + h), γ(t))
h

whenever this limit exists. If γ is recti�able, its metric speed exists at L1-almost every t ∈ [a, b] [7, Theorem
2.1].

A recti�able path γ : [a, b]→ Y is absolutely continuous if for all a ≤ s ≤ t ≤ b,

d(γ(t), γ(s)) ≤
t∫

s

vγ(u) dL1(u)

with vγ ∈ L1([a, b]) and L1 the Lebesgue measure on the real line. Equivalently, γ is absolutely continuous
if it maps sets of L1-measure zero to sets ofH1

Y -measure zero in its image [7, Section 3].
Let γ : [a, b] → X be an absolutely continuous path. Then the path integral of a Borel function ρ : X →

[0,∞] over γ is
∫

γ

ρ ds =
b∫

a

(ρ ◦ γ)vγ dL1. (2.1)

If γ is recti�able, then the path integral of ρ over γ is de�ned to be the path integral of ρ over the arc length
parametrization γs of γ; see for example Chapter 5 of [12].

2.2 Quasiconformal Jordan domains

We assume that Y is a quasiconformal Jordan domain. In particular, its completion Y is homeomorphic to
[0, 1]2 and has �nite Hausdor� 2-measure.

Given a Borel set A ⊂ Y, the length of a path γ : [a, b] → Y in A is de�ned as
∫
Y χA(y)#(γ

−1(y)) dH1
Y (y),

where #(γ−1(x)) is the countingmeasure of γ−1(x). This formulamakes sense for paths that are not necessarily
recti�able [8, Theorem 2.10.13]. When γ is recti�able, for every Borel function ρ : Y → [0,∞],

∫

γ

ρ ds =
∫

Y

ρ(x)#(γ−1(x)) dH1
Y (x). (2.2)
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The equality (2.2) follows from [8, Theorem 2.10.13] via a standard approximation argument using simple
functions.

We recall a special case of the coarea inequality [8, 2.10.25]. Let α ∈ {0, 1}, B ⊂ Y Borel, and f : Y → R
1-Lipschitz. Then

*∫

R

Hα
Y (B ∩ f

−1(t)) dL1(t) ≤ CαHα+1
Y (B), (2.3)

where C0 = 1 and C1 = 4/π. Here
∫ * refers to the upper integral [8, 2.4.2]. IfHα+1

Y (B) < ∞, the upper integral
can be replaced with the usual one [8, 2.10.26].

Via a standard approximation argument using simple functions, we obtain the following.

Theorem 2.1. Let f : Y → R be 1-Lipschitz, α ∈ {0, 1} and Cα as in (2.3). Then, for every Borel function
g : Y → [0,∞],

*∫

R

∫

f −1(t)

g(y) dHα
Y (y) dL

1(t) ≤ Cα
∫

Y

g(y) dHα+1
Y (y).

When g isHα+1
Y -integrable, the upper integral can be replaced with the usual one.

In the following, we say that C ⊂ Y is a continuum if C is compact and connected. A compact set F ⊂ Y
separates x, y ∈ Y if x, y ∈ Y \ F and the points are in di�erent connected components of Y \ F.

Lemma 2.2. Let F ⊂ Y be compact and x, y ∈ Y separated by F. Then there exists a continuum C ⊂ F that
separates x and y.

Proof. Let x, y and F be as in the claim.We consider a homeomorphism h : Y → Z ⊂ S2, where Z is the union
of the equator and the southern hemisphere of S2. Then there exists a nested sequence of quadrilaterals
Zn ⊃ Zn+1 ⊃ Z such that h(x), h(y) ∈ Zn is an interior point of Zn for each n ∈ N and Z =

⋂∞
n=1 Zn.

Since Fn = ∂Zn ∪ h(F) ⊂ Zn separates h(x) and h(y) in S2, there exists a continuum Cn ⊂ Fn separating
h(x) and h(y) in S2 [23, Chapter 2, Lemma 5.20]. In particular, for every path γ : [0, 1]→ Z joining h(x) to h(y),
there exists zn ∈ Cn∩|γ| for every n ∈ N. Up to passing to a subsequence and relabeling, the continua (Cn)∞n=1
converge to a continuum C′ ⊂

⋂∞
n=1 h(F) ∩ Zn = h(F) in the Hausdor� convergence [1, Theorems 4.4.15 and

4.4.17]. If γ and (zn)∞n=1 are as above, the accumulation points of (zn)∞n=1 are contained in C′∩|γ| [1, Proposition
4.4.14]. Consequently, C′ ∩ |γ| ≠ ∅ for every such γ. Hence C = h−1(C′) ⊂ F is a continuum separating x and
y.

2.3 Metric Sobolev spaces

In this section we give an overview of Sobolev theory in the metric surface setting, and refer to [12] for a
comprehensive introduction.

Let Γ ⊂ C([0, 1] ; Y) be a family of recti�able paths in Y. A Borel function ρ : Y → [0,∞] is admissible for
Γ if the path integral

∫
γ
ρ ds ≥ 1 for all recti�able paths γ ∈ Γ. The modulus of Γ is

mod Γ = inf
∫

Y

ρ2 dH2
Y ,

where the in�mum is taken over all admissible functions ρ. Observe that if Γ1 and Γ2 are path families and
every path γ1 ∈ Γ1 contains a subpath γ2 ∈ Γ2, thenmod Γ1 ≤ mod Γ2. In particular, this holds if Γ1 ⊂ Γ2. A
property holds for almost every path if the family of paths for which the property fails has zero modulus.
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Let ψ : (Y , dY ) → (Z, dZ) be a mapping between metric spaces Y and Z. A Borel function ρ : Y → [0,∞]
is an upper gradient of ψ if

dY (ψ(x), ψ(y)) ≤
∫

γ

ρ ds

for every recti�able path γ : [0, 1] → Y connecting x to y. The function ρ is a weak upper gradient of ψ if the
same holds for almost every recti�able path.

A weak upper gradient ρ ∈ L2loc(Y) of ψ is minimal if it satis�es ρ ≤ ρ̃ almost everywhere for all weak
upper gradients ρ̃ ∈ L2loc(Y) of ψ. If ψ has a weak upper gradient ρ ∈ L2loc(Y), then ψ has a minimal weak
upper gradient, which we denote by ρψ. We refer to Section 6 of [12] and Section 3 of [26] for details.

Fix a point z ∈ Z, and let dz = dZ(·, z). The space L2(Y , Z) is de�ned as the collection ofmeasurablemaps
ψ : Y → Z such that dz ◦ ψ is in L2(Y).

Moreover, L2loc(Y , Z) is de�ned as those measurable maps ψ : Y → Z for which, for all y ∈ Y, there is an
open set U ⊂ Y containing y such that ψ|U is in L2(U, Z).

The metric Sobolev space N1,2
loc (Y , Z) consists of those maps ψ : Y → Z in L2loc(Y , Z) that have a minimal

weak upper gradient ρψ ∈ L2loc(Y).
For open ∅ = ̸ U ⊂ Y, we say that ψ ∈ N1,2(U, Z) if ψ|U ∈ N1,2

loc (U, Z), ρψ|U ∈ L
2(U) and ψ|U ∈ L2(U, Z).

Given a homeomorphism ψ : Y → Z, the pullback measure ψ*H2
Z is de�ned by ψ*H2

Z(B) = H2
Z(ψ(B)) for

each Borel set B ⊂ Y. The pullback measure has a decomposition ψ*H2
Z = JψH2

Y + µ⊥, where Jψ is locally
integrable with respect toH2

Y , and the measuresH2
Y and µ⊥ are singular [5, Sections 3.1-3.2 in Volume I]. We

call the density Jψ the Jacobian of ψ.

2.4 Quasiconformal mappings

We de�ne quasiconformal maps and recall some basics.

De�nition 2.3. Let (Y , dY ) and (Z, dZ) bemetric spaces with locally �nite Hausdor� 2-measures. We say that
a homeomorphism ψ : (Y , dY )→ (Z, dZ) is quasiconformal if there exists K ≥ 1 such that for all path families
Γ in Y

K−1mod Γ ≤ modψΓ ≤ Kmod Γ , (2.4)

where ψΓ = {ψ ◦ γ : γ ∈ Γ}. If (2.4) holds with a constant K ≥ 1, we say that ψ is K-quasiconformal.

De�nition 2.3 is sometimes called the geometric de�nition of quasiconformality. A special case of [26,
Theorem 1.1] yields the following.

Theorem 2.4. Let Y and Z be metric spaces with locally �nite Hausdor� 2-measure and ψ : Y → Z a home-
omorphism. The following are equivalent for the same constant K > 0:

(i) mod Γ ≤ KmodψΓ for all path families Γ in Y.
(ii) ψ ∈ N1,2

loc (Y , Z) and satis�es ρ2ψ(y) ≤ KJψ(y) forH
2
Y -almost every y ∈ Y.

The outer dilatation of ψ is the smallest constant KO ≥ 0 for which the modulus inequality mod Γ ≤
KOmodψΓ holds for all Γ in Y. The inner dilatation of ψ is the smallest constant KI ≥ 0 for whichmodψΓ ≤
Kmod Γ holds for all Γ in Y. The number K(ψ) = max

{
KI(ψ), KO(ψ)

}
is themaximal dilatation of ψ.

For a set G ⊂ Y and disjoint sets F1, F2 ⊂ G, let Γ(F1, F2;G) denote the family of paths that start from
F1, end in F2 and whose images are contained in G. A quadrilateral is a set Q homeomorphic to [0, 1]2 with
boundary ∂Q consisting of four boundary arcs, overlapping only at the end points, labelled ξ1, ξ2, ξ3, ξ4 in
cyclic order.

De�nition 2.5. A metric surface Y is reciprocal if there exists a constant κ ≥ 1 such that

κ−1 ≤ mod Γ (ξ1, ξ3;Q)mod Γ (ξ2, ξ4;Q) ≤ κ (2.5)
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for every quadrilateral Q ⊂ Y, and

lim
r→0+

mod Γ
(
BY (y, r), Y \ BY (y, R); BY (y, R)

)
= 0 (2.6)

for all y ∈ Y and R > 0 such that Y \ BY (y, R) = ̸ ∅.

We note that the product in (2.5) is always bounded from below by a universal constant κ0 > 0 [19]. We
also have the following.

Proposition 2.6 (Corollary 12.3 of [18]). Let Y be a metric surface, U ⊂ Y a domain, and ψ : U → Ω ⊂ R2 a
homeomorphism. If KO(ψ) < ∞, then KI(ψ) ≤ (2 · κ0) KO(ψ) < ∞.

Recall the de�nition of quasiconformal Jordan domain from the introduction.

Proposition 2.7. Let Y be a quasiconformal Jordan domain andΨ : Y → D a homeomorphism. Then KO(Ψ) ≤
K < ∞ if and only if there exists a constant C > 0 such that

lim inf
r→0+

modΨ−1Γ
(
BD(x, r),D \ BD(x, 2r); BD(x, 2r)

)
≤ C (2.7)

for every x ∈ D. The constants K and C depend on each other quantitatively. Moreover, KI(Ψ) ≤ (2 · κ0) · K.

Proof. Since theLebesgue2-measure onD is doubling, Theorem1.2 of [26] states that anupper boundKO(Ψ) ≤
K is quantitatively equivalent to the following statement: there exists C′ ≥ 1 such that for every x ∈ D,

lim inf
r→0+

r2modΨ−1Γ
(
BD(x, r),D \ BD(x, 2r); BD(x, 2r)

)

L2(BD(x, r))
≤ C′.

SinceL2(BD(x, r)) is comparable to r2, KO(Ψ) ≤ K if and only if (2.7) holds for some C, with K and C depending
on one another quantitatively.

It remains to prove that KI(Ψ) ≤ C0K. To this end, consider ψ = Ψ |Y and ϕ = ψ−1. Proposition 2.6
implies that KI(ψ) = KO(ϕ) ≤ C0K. Then Proposition 2.4 implies that ϕ ∈ N1,2(D; Y) since the Jacobian Jϕ
of ϕ is integrable. Observe that the extension Φ = Ψ−1 of ϕ is an element of N1,2(D; Y). This can be seen by
extendingΦ to a neighbourhood ofD via re�ection over S1 and by applying [15, Theorem 1.12.3]. Theminimal
weak upper gradient of Φ has a representative that vanishes in S1 since L2(S1) = 0. Therefore ρ2Φ ≤ C0KJΦ
holds L2-almost everywhere in D. This implies that Φ satis�es the second condition in Proposition 2.4 with
the constant C0K.

We recall a su�cient condition for (1.2) for later use.

Lemma 2.8. Suppose that there exists CU > 0 such that for all y ∈ ∂Y and 0 < r < diam ∂Y,

H2
Y (BY (y, r)) ≤ CU r

2. (2.8)

Then for C̃U = 8CU / log 2 and for every y ∈ ∂Y and 0 < 2r < R < 2−1 diam ∂Y,

mod Γ(BY (y, r), Y \ BY (y, R); Y) ≤
C̃U
log R

r
. (2.9)

In particular, (1.2) in Proposition 1.2 holds under the assumption (2.8).

Proof. The inequality (2.9) follows from (2.8) by considering the admissible function ρ(x) =
1

log R
r

1
d(y,x) χ{r≤d(y,x)≤R}. We claim that ρ is admissible for the family Γ(BY (y, r), Y \ BY (y, R); Y). To this

end, �x a recti�able γ ∈ Γ(BY (y, r), Y \ BY (y, R); Y).
We denote f (x) = d(y, x). Whenever x ∈ f −1(t), we have ρ(x)#(γ−1(x)) ≥ 1

log R
r

1
t χ{r≤t≤R}. Therefore

*∫

R

∫

f −1(t)

ρ(x)#(γ−1(x)) dH0
Y (x) dL

1(t) ≥
R∫

r

1
log R

r

1
t dL

1(t) = 1.
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Then Theorem 2.1 implies

∫

Y

ρ(x)#(γ−1(x)) dH1
Y (x) ≥

*∫

R

∫

f −1(t)

ρ(x)#(γ−1(x)) dH0
Y (x) dL

1(t).

The equality (2.2) yields
∫
γ
ρ ds =

∫
Y ρ(x)#(γ

−1(x)) dH1
Y (x). Hence ρ is admissible for Γ(BY (y, r), Y \

BY (y, R); Y).
The L2-norm of ρ is estimated from above by applying the area growth (2.8) on the annuli Al ={

2lr ≤ d(y, x) < 2l+1r
}
for l = 0, 1, 2, . . . , k for 2kr < R ≤ 2k+1r, k ∈ N. That is,

∫

Y

ρ2(x) dH2
Y (x) ≤

k∑

l=0

∫

Al

ρ2(x) dH2
Y (x) ≤

1
log2( Rr )

k∑

l=0

H2
Y (B(y, 2

l+1r))
22lr2

≤ 1
log2( Rr )

k∑

l=0

CU22l+2r2
22lr2

= 4CU
k + 1
log2 R

r
≤ 8CU / log 2

log R
r

since k + 1 ≤ (2/ log 2) log R
r . The inequality (2.9) follows.

We claim now that (1.2) in Proposition 1.2 holds. Let y ∈ ∂Y and R′ > R > 0 such that Y \ BY (y, R
′) ≠ ∅

and 2−1 diam ∂Y > R. Then for every 0 < 2r < R, every path in Γ(BY (y, r), Y \ BY (y, R
′); Y) has a subpath in

Γ(BY (y, r), Y \ BY (y, R); Y). Hence

mod Γ(BY (y, r), Y \ BY (y, R
′); Y) ≤ mod Γ(BY (y, r), Y \ BY (y, R); Y).

The right-hand side converges to zero as r → 0+, given (2.9). This establishes (1.2).

2.5 Quasicircles

In this section we recall some basic properties of quasisymmetries and quasicircles. If g : (Y , dY ) → (Z, dZ),
we denote

Lg(y, r) = sup
w∈BY (y,r)

dZ(g(y), g(w)) and `g(y, r) = inf
w∈Y\BY (y,r)

dZ(g(y), g(w)).

De�nition 2.9. Let η : [0,∞) → [0,∞) be a homeomorphism. A homeomorphism g : (Y , dY ) → (Z, dZ)
between metric spaces is η-quasisymmetric if for every y ∈ Y and 0 < r1, r2 < diam Y,

Lg(y, r1) ≤ η
(
r1
r2

)
`g(y, r2). (2.10)

A homeomorphism g is quasisymmetric if it is η-quasisymmetric for some homeomorphism η : [0,∞) →
[0,∞).

A set S ⊂ Y is r-separated if for every x, y ∈ S with x ≠ y, dY (x, y) ≥ r, and an r-net if for every y ∈ Y,
there exists x ∈ S for which dY (x, y) < r. An r-separated set is maximal if it is also an r-net.

De�nition 2.10. Ametric space (Y , dY ) has its Assouad dimension bounded from above by Q > 0 if for every
0 < ϵ < 1 and every (y, r) ∈ Y × (0, diam Y), any ϵr-separated set S ⊂ BY (y, r) satis�es

#S ≤ Cϵ−Q , (2.11)

where C is a constant independent of ϵ, y, r and S. Here #S refers to the counting measure of S. The Assouad
dimension of Y is the in�mum of such Q.
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A metric space (Y , dY ) is said to be doubling if its Assouad dimension is �nite.

De�nition 2.11. Let λ ≥ 1. A metric space (Y , dY ) has λ-bounded turning if for every y, z ∈ Y there exists a
compact and connected set E ⊂ Y containing y and z such that diam E ≤ λdY (y, z).

We recall that a metric space C homeomorphic to S1 is a quasisymmetric image of S1 if and only if C has
bounded turning and is doubling [21]. We refer to any quasisymmetric image of S1 as a quasicircle.

3 Carathéodory’s theorem

3.1 Proof of Theorem 1.1

We �x a quasiconformal homeomorphism ϕ : D→ Y and claim that it has a monotone and surjective exten-
sion Φ : D→ Y. We are assuming that Y is homeomorphic to [0, 1]2 and has �nite Hausdor� 2-measure.

Fix x0 ∈ S1. For each 0 < r < 2−1, denote Er = S1(x0, r) ∩ D. Let Vr be the component of D \ Er whose
closure contains {x0}.

Let Ur = ϕ(Vr). Since Vr is connected, so is Ur. Moreover, as Vr′ ⊂ Vr whenever r′ < r, we have Ur′ ⊂ Ur.
Therefore

∅ ≠ C̃ =
⋂

0<r<2−1
Ur is compact and connected [22, Theorem 28.2]. (3.1)

Notice that C̃ ⊂ ∂Y.
Lemma 3.1 implies that C̃ is a singleton. Let y0 denote the unique element. We de�ne Φ(x0) := y0. We

repeat the argument for every x0 ∈ S1. By setting Φ(x) = ϕ(x) for every x ∈ D, we obtain a mapping

Φ : D→ Y .

We prove in Lemma 3.4 that Φ is continuous and surjective. Lemma 3.5 shows the monotonicity of Φ. Hence
Theorem 1.1 follows after we verify these lemmas.

Lemma 3.1. Let dr denote the diameter of Ur. Then dr → diam C̃ = 0 for every x0 ∈ S1.

Before proving Lemma 3.1, we prove a couple of technical lemmas. In the following, an arc refers to a set
homeomorphic to [0, 1].

Lemma 3.2. Let C′ ⊂ Y be an arc and C ⊂ ∂Y a compact and connected set. Then

diam C > 0 implies mod Γ(C, C′; Y ∪ C) > 0. (3.2)

Proof of Lemma 3.2. Since C and C′ are disjoint, there areBorel functions ρ ∈ L2(Y) admissible for Γ(C, C′; Y∪
C). We �x such a function ρ and �nd a lower bound for the L2-norm of ρ, depending only on C and C′. The
claim (3.2) follows from this.

We argue as in the proof of [18, Proposition 3.5]. First, we join C and C′ with an arc γ : [0, 1]→ Y ∪ C for
which r0 = d(|γ| , ∂Y \ C) > 0, and consider the Lipschitz function f (z) = d(|γ| , z). Since C and C′ are arcs,
we can choose γ in such a way that γ(0) separates C into two arcs J1 and J2, γ(1) separates C′ into two arcs J3
and J4, and γ(t) ∈ Y \ (C ∪ C′) for every 0 < t < 1.

Fix 0 < r1 < r0 such that every Ji intersects f −1(r) for every 0 < r < r1. For every such r > 0, the level
set f −1(r) separates |γ| from the arc ∂Y \ C. Then Theorem 2.2 provides us with a continuum Γr ⊂ f −1(r) that
separates |γ| from ∂Y \ C. The continuum Γr must intersect every Ji, since otherwise we �nd a path joining
|γ| to ∂Y \ C that does not intersect Γr.

By applying Theorem 2.1 to the function g(y) = χY (y), we conclude that the level set f −1(r) has �nite
Hausdor� 1-measure for L1-almost every 0 < r < r1. In particular, the continuum Γr has �nite Hausdor�
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1-measure. Then every pair of points from Γr can be joined with a recti�able path within Γr [20, Proposition
15.1]. Consequently, there exists a recti�able arc θ : [0, 1]→ Γr joining J1 ⊂ C to J3 ⊂ C′. Since 0 < r < r1 < r0,
we have θ ∈ Γ(C, C′; Y ∪ C). Hence

1 ≤
∫

θ

ρ ds ≤
∫

f −1(r)

ρ dH1
Y .

Then Theorem 2.1 and Hölder’s inequality imply

r1 ≤
4
π

(
H2
Y (Y)

)1/2
‖ρ‖L2(Y) .

Rearranging this inequality establishes the claim.

Lemma 3.3. Let θ : (0, 1)→ G ⊂ Y be a homeomorphism and suppose that for every 0 < s < t < 1,

`(θ|[s,t]) ≤
t∫

s

h(a) dL1(a)

for some h ∈ L1([0, 1]). Then there exists an absolutely continuous extension θ : [0, 1] → G of θ that is
surjective.

Proof of Lemma 3.3. Let 0 < s < t < 1. Then

d(θ(s), θ(t)) ≤
1∫

0

(
χ[0,s](a) + χ[0,t](a)

)
h(a) dL1(a). (3.3)

By the absolute continuity of the integral, given ϵ > 0, there exists δ > 0 for which

|s| , |t| < δ implies
1∫

0

(
χ[0,s] + χ[0,t]

)
(a)h(a) dL1(a) < ϵ. (3.4)

This fact and (3.3) imply that for any given (sj)∞j=1 ⊂ (0, 1) converging to zero, the sequence (θ(sj))∞j=1 is Cauchy.
Since Y is complete, the sequence converges to some y0 ∈ G. We de�ne θ(0) := y0. The inequalities (3.3) and
(3.4) imply that y0 is independent of the sequence (sj)∞j=1, and setting θ(s) = θ(s) for0 < s de�nes a continuous
extension of θ to [0, 1).

By arguing similarly for t = 1, we �nd a continuous extension θ : [0, 1] → G of θ. The inequality (3.3)
extends to every 0 ≤ s < t ≤ 1, implying the absolute continuity of θ. Notice that for every y ∈ G, there exists
a sequence (tj)∞j=1 ⊂ (0, 1) such that θ(tj) → y. By passing to a subsequence and relabeling, we may assume
that (tj)∞j=1 has a limit in [0, 1]. This implies that θ is surjective.

Proof of Lemma 3.1. Since C̃ is the intersection of the Ur and Ur are nested, we have dr → diam C̃. Hence the
di�culty lies in proving diam C̃ = 0.

Fix an arc C′ ⊂ Y for which ϕ−1(C′) ⊂ D \ (Er ∪ Vr) for every 0 < r < 2−1. We assume diam C̃ > 0 and
derive a contradiction. Since diam C̃ > 0, there exist a subarc C ⊂ C̃ such that r0 = d(C, C′ ∪ (∂Y \ C̃)) > 0. We
claim that

mod Γ(C, C′; Y ∪ C) = 0. (3.5)

If (3.5) holds for C, we obtain a contradiction with Lemma 3.2.
So it su�ces to prove (3.5). We claim that there exists a sequence rn → 0+ such that every θ ∈ Γ(C, C′; Y∪

C) has a subpath in Γ(ϕ(Ern ∩D), C′; Y). If this can be proved, then the K-quasiconformality of ϕ yields

mod Γ(C, C′; Y ∪ C) ≤ Kmod Γ(Ern ∩D, ϕ−1(C′);D).

Given Lemma 2.8, the right-hand side converges to zero as n →∞, andwe conclude (3.5). The rest of the proof
is spent on �nding the sequence of radii (rn)∞n=1.
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The K-quasiconformality ofϕ yields that theminimalweak upper gradient ρϕ satis�es ρ2ϕ ≤ KJϕ ∈ L1(D).
The integrability of Jϕ follows from the fact that Y has �nite Hausdor� 2-measure. This implies that ϕ has an
L2(D)-integrable upper gradient g [12, Lemma 6.2.2].

We consider g0 = gχD ∈ L2(D). Polar coordinates centered at x0 yield

∞ > ‖g0‖L1(D) ≥
2−1∫

0

∫

Er

g0 dH1 dL1(r). (3.6)

In particular, g0 has a �nite path integral over Er for almost every 0 < r < 2−1. Let I denote those 0 < r < 2−1

for which this holds.
Let Γ0 be the family of non-constant recti�able paths in D along which g0 is not integrable. Consider an

absolutely continuous non-constant path γ : [a, b] → Y with image in Y and which is not an element of Γ0.
Since g is an upper gradient of ϕ, we have that

`(ϕ ◦ γ) ≤
∫

γ

g ds =
∫

γ

g0 ds; see [12, Proposition 6.3.2]. (3.7)

Consider a surjective Lipschitz γr : [0, 1]→ Er for r ∈ I. Then, for every 0 < s < t < 1, (3.7) implies

`((ϕ ◦ γr)|[s,t]) ≤
∫

γr|[s,t]

g0 ds ≤
∫

Er

g0 dH1,

where the last term on the right is �nite. Therefore θr = ϕ ◦ γr : (0, 1)→ ϕ(Er ∩ D) satis�es the assumptions
of Lemma 3.3. Hence there exists a continuous extension θr : [0, 1]→ Fr onto Fr := ϕ(Er ∩D).

Since ϕ is a homeomorphism, θr(s) ∉ Y for both s = 0, 1. Hence Fr is homeomorphic to a circle or an arc.
We note that ϕ(Vr) is one of the connected components of Y \ Fr. In particular, Ur = ϕ(Vr) is homeomorphic
to [0, 1]2, Ur ∩ ∂Y is a point or an arc, and C ⊂ C̃ ⊂ Ur ∩ ∂Y. As the ends of Ur ∩ ∂Y and Fr coincide,
d(C, ∂Y \ C̃) > 0 implies that Ur ∩ ∂Y is an arc and C ∩ Fr = ∅. This means that every path θ ∈ Γ(C, C′; Y ∪ C)
has a subpath in Γ(Fr ∩ Y , C′; Y). Then (3.5) follows by taking a sequence (rn)∞n=1 ⊂ I converging to zero.

Lemma 3.4. The mapping Φ : D→ Y is continuous and surjective.

Proof. Let x0 ∈ S1. IfD 3 xn → x0, the accumulation points of (Φ(xn))∞n=1 are contained in the intersection of
Ur, where Ur are as in the de�nition of C̃ in (3.1). Lemma 3.1 shows that the intersection is a singleton, which
we de�ned to be Φ(x0). This implies Φ(xn)→ Φ(x0).

More generally, if D 3 xn → x0, we �nd for every xn an element zn ∈ D such that dY (Φ(zn),Φ(xn)) ≤ 2
−n

and ‖zn − xn‖ ≤ 2−n. Then D 3 zn → x0 and Φ(zn) → Φ(x0). Since dY (Φ(zn),Φ(xn)) → 0, we have Φ(xn) →
Φ(x0). This implies that Φ is continuous.

Consider now y0 ∈ Y. Then there exists a sequence Y 3 yn → y0. Up to passing to a subsequence and
relabeling, (Φ−1(yn))∞n=1 converges to some x0 ∈ D. The continuity of Φ implies Φ(x0) = y0.

Lemma 3.5. The mapping Φ : D→ Y is monotone.

Proof. Let y ∈ ∂Y and suppose that there are two distinct points x1 and x2 from S1 such that Φ(x1) = y =
Φ(x2). Let Ii be radial lines from xi to0 for i = 1, 2 and de�ne I = I0∪I1. HereΦ(I) is a Jordan loop intersecting
∂Y exactly at y. LetU denote the component of Y\Φ(I)whose closure intersects ∂Y only at y. ThenV = Φ−1(U)
is one of the components of D \ I. By construction, V ∩ S1 is connected and is mapped to the singleton y.
Therefore x1 and x2 can be joined with a path in Φ−1(y). The monotonicity of Φ follows.

3.2 Proof of Proposition 1.2

Recall that we �x a quasiconformal homeomorphism ϕ : D → Y and study its extension Φ under the as-
sumption (1.2). This is done in several parts. First, Lemma 3.6 proves that the extension is a homeomorphism.
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Lemma 3.8 implies thatΦ is quasiconformal. After this is veri�ed, Lemma 3.9 proves that KO(Φ) = KO(ϕ) and
KI(Φ) = KI(ϕ). In particular, the maximal dilatations of Φ and ϕ coincide.

To �nish up the proof of Proposition 1.2, we also need to verify that if Φ is a quasiconformal homeo-
morphism, then the assumption (1.2) holds. But this follows from the corresponding Euclidean result. So
Proposition 1.2 follows after we prove the lemmas mentioned above.

Lemma 3.6. The mapping Φ is a homeomorphism.

Proof. Let y ∈ ∂Y and suppose that there exists a non-trivial continuum E ⊂ Φ−1(y). Let F ⊂ Y \ BY (y, R) be
a non-trivial arc for some R > 0. For 0 < r < R, let Γ(y, r, R) = Γ(BY (y, r), Y \ BY (y, R); Y). Then

mod Γ(y, r, R) ≥ mod(Γ(y, r, R) ∩ AC(Y)),

where AC(Y) refers to those absolutely continuous paths in Y whose images lie in Y. Since ϕ = Φ|D is K-
quasiconformal, we have that

mod(Γ(y, r, R) ∩ AC(Y)) ≥ K−1mod(Γ(E,Φ−1(F);D ∪ E ∪ Φ−1(F))).

The right-hand side is a strictly positive lower bound; recall Lemma 3.2. Thereforemod Γ(y, r, R) ≥ C0 > 0 for
a constant independent of r. By passing to the limit r → 0+, we �nd a contradiction with (1.2). The injectivity
ofΦ follows. SinceΦ is continuous, surjective, andmonotone, we conclude thatΦ is a homeomorphism.

Next we claim thatΦ is quasiconformal. To this end, we letΨ = Φ−1. Due to Proposition 2.7, it is su�cient
to �nd a constant C0 such that for every x ∈ S1,

lim inf
r→0+

modΨ−1Γ
(
BD(x, r),D \ BD(x, 2r); BD(x, 2r)

)
≤ C0. (3.8)

We denote Γ(x, r, 2r) = Γ
(
BD(x, r),D \ BD(x, 2r); BD(x, 2r)

)
for the rest of the section.

Fix 0 < r < 1/4. Let ξ1 = Ψ−1
(
S1(x, r) ∩D

)
and ξ3 = Ψ−1

(
S1(x, 2r) ∩D

)
. Let ξ2 and ξ4 denote the

subarcs of ∂Y joining ξ1 and ξ3 in such a way that the arcs ξ1, ξ2, ξ3, ξ4 form the boundary decomposition of
a quadrilateral Q in Y. Then

modΨ−1Γ(x, r, 2r) = mod Γ(ξ1, ξ3;Q) =: M.

Lemma3.7. There exists a homeomorphism f : Q → [0, 1]×[0,M]with the following properties: First, f (ξ1) =
{0} × [0,M] and f (ξ3) = {1} × [0,M]. Whenever 0 < a < b < M and I = [a, b], let Q0 = f −1([0, 1] × I),

ξ01 = f −1({0} × I), ξ02 = f −1([0, 1] × {a}),
ξ03 = f −1({1} × I), ξ04 = f −1([0, 1] × {b}).

Then b − a = mod Γ(ξ01 , ξ03 ;Q0).

Proof. Proposition 9.1 [18] and [18, equation (57), Lemma 10.2] provide us with f having the stated properties.
Notice that [18, Proposition 9.1] is applicable since (2.6) holds for every x0 ∈ Y and the product in (2.5) is
always bounded from below by a universal constant κ0 > 0 [19]. These facts allow us to apply [18, equation
(57), Lemma 10.2] as well.

Lemma 3.8. The inequality (3.8) holds for a constant C0 = 2KC1, where C1 depends only on D and K is the
maximal dilatation of ϕ.

Proof. We let b = 3M/4 and a = M/4 in Lemma 3.7. Since the restriction of Ψ to Y is K-quasiconformal,

mod Γ(ξ01 , ξ03 ;Q0) ≤ Kmod Γ(Ψ(ξ01 ), Ψ(ξ03 );Ψ(Q0)).

Observe that Γ(Ψ(ξ01 ), Ψ(ξ03 );Ψ(Q0)) ⊂ Γ(x, r, 2r). Therefore

mod Γ(Ψ(ξ01 ), Ψ(ξ03 );Ψ(Q0)) ≤ mod Γ(x, r, 2r).
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Here mod Γ(x, r, 2r) ≤ C1 for a constant depending only on D. Then Lemma 3.7 yields M ≤ 2KC1. The claim
follows by passing to the limit r → 0+.

Lemma 3.9. The outer (resp. inner) dilatation of Φ coincides with the outer (resp. inner) dilatation of ϕ.

Proof. Lemmas 3.6 and 3.8 prove thatΦ is a quasiconformal homeomorphism. InD, theminimal weak upper
gradients ofΦ andϕ coincide. This is also true for their Jacobians. Therefore they satisfy (ii) in Proposition 2.4
with the same constant. Hence KO(Φ) = KO(ϕ).

Consider the Borel functions g = χS1 and g̃ = (g ◦ Φ−1)ρΦ−1 . The property (ii) in Proposition 2.4 implies
∥∥g̃
∥∥2
L2(Y) ≤ KO(Φ

−1) ‖g‖2L2(D) = 0.

Hence g̃ = 0H2
Y -almost everywhere in Y. We conclude that ρΦ−1 (y) = 0 for H2

Y -almost every y ∈ ∂Y. Hence
ρΦ−1 = ρϕ−1χY H2

Y -almost everywhere in Y. We conclude that ϕ and Φ satisfy (ii) in Proposition 2.4 with the
same constant. In other words, KI(Φ) = KI(ϕ).

4 Beurling–Ahlfors extension
For this section we �x a quasiconformal Jordan domain Y satisfying (1.3) and a quasiconformal homeomor-
phism ϕ : D → Y. Let Φ : D → Y denote the quasiconformal homeomorphic extension of ϕ, obtained from
Proposition 1.2. We refer to gϕ = Φ|S1 as the boundary map of ϕ. The goal of this section is to prove Theo-
rem 1.3. We reduce the proof to Proposition 4.1.

Observe that if gϕ is a quasisymmetry, then ∂Y has bounded turning as this property is preserved by
quasisymmetries [21]. Moreover, if we �x an arbitrary quasisymmetry g : S1 → ∂Y, then h = g−1ϕ ◦ g : S1 → S1

is a quasisymmetry. The Beurling–Ahlfors extension theorem [2] yields the existence of a quasiconformalmap
H : D → D whose boundary map equals h. Then G = Φ ◦ H : D → Y is the quasiconformal extension of g
whose existence we wanted to establish. So Theorem 1.3 is a consequence of the following result.

Proposition 4.1. If ∂Y has bounded turning and satis�es the mass upper bound (1.3), then the boundary
map gϕ = Φ|S1 is a quasisymmetry.

We start the proof of Proposition 4.1 by �rst establishing Proposition 1.4. There we claim that ∂Y has
Assouad dimension at most two.

Lemma 4.2. Suppose that ∂Y has bounded turning with constant λ > 1. Let C = (4λ)3 2
π . Then for all y ∈ ∂Y

and all 0 < r < diam ∂Y,H2
Y (BY (y, r)) ≥ C

−1r2.

Proof. Consider y ∈ ∂Y and the 1-Lipschitz function f (z) = d(y, z). For every 0 < r < (4λ)−1 diam ∂Y, we have
that f −1(r)∩∂Y ≠ ∅. Let y0 ∈ ∂Y \BY (y, 2λr). We obtain from Theorem 2.2 a continuum Cr ⊂ f −1(r) separating
y and y0.

Let E ⊂ ∂Y be the (closure of the) component of ∂Y \ Cr that contains y and let a and b denote the ends
of E. Here a, b ∈ E ∩ Cr ⊂ f −1(r) so d(a, y) = r = d(b, y).

Let Ea ⊂ ∂Y be the arc ending at a and y with diam Ea ≤ λr, and let Eb denote the corresponding arc for
b and y. Then Ea ∪ Eb = E. Indeed, otherwisemax {diam Ea , diam Eb} ≥ d(y, y0) > 2λr.

Let E′ ⊂ ∂Y be the arc ending at a and b with smaller diameter. Then diam E′ ≤ 2−1 diam ∂Y. Since
diam E ≤ diam Ea + diam Eb ≤ 2λr < 2−1 diam ∂Y, we have E′ = E.

We conclude that diam Cr ≥ d(a, b) ≥ λ−1 diam E ≥ λ−1r. Since Cr is a continuum,H1
Y (f

−1(r)) ≥ H1
Y (Cr) ≥

diam Cr ≥ λ−1r for each 0 < r < (4λ)−1 diam ∂Y [8, 2.10.12].
By integrating over the interval (0, r) and by applying Theorem 2.1, we conclude that

H2
Y (BY (y, r)) ≥ (4λ)

−1 π
2 r

2
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whenever 0 < r < (4λ)−1 diam ∂Y. If (4λ)−1 diam ∂Y ≤ r < diam ∂Y, we have

H2
Y (BY (y, r)) ≥ H

2
Y (BY (y, (4λ)

−1r)) ≥ (4λ)−1 π2

(
(4λ)−1r

)2
.

The claim follows for C = (4λ)3 2
π .

Proof of Proposition 1.4. Let 0 < r < diam ∂Y and 0 < ϵ < 1. We consider a point y ∈ ∂Y and an ϵr-separated
set S ⊂ BY (y, r) ∩ ∂Y. We conclude from Lemma 4.2 and (1.3) that for some C ≥ 1

C(2r)2 ≥ H2
Y (BY (y, 2r)) ≥ H

2
Y

(⋃

x∈S
BY (x, ϵr)

)
≥ C−1

( ϵr
2

)2
#S.

Therefore #S ≤ Cϵ−2 for some constant C independent of r, y and ϵ. Hence the Assouad dimension of ∂Y is at
most 2.

Proof of Proposition 4.1. Let 0 < r0 be such that for every x ∈ S1 and every 0 < r ≤ r0, we have that 4Lg(x, 2r) <
diam ∂Y.

Fix x ∈ S1 and 0 < r < r0. Let z, a, b ∈ S1 ∩ D(x, r) be such that 0 < ‖a − z‖2 ≤ ‖b − z‖2. We
proved in Proposition 1.4 that ∂Y is doubling, so by a result of Tukia–Väisälä [21, Theorems 2.15 and 2.23],
the quasisymmetry of g = gϕ follows if there exists a constant H > 0 depending only on the constants
in (1.3), Lemma 4.2, the bounded turning constant λ of ∂Y, and the maximal dilatation K of ϕ such that
d(g(a), g(z)) ≤ Hd(g(b), g(z)).

Let ` = d(g(a), g(z)) and let M > 0 be such that ` > Md(g(b), g(z)). If we �nd H0 such that M ≤ H0
independently of a, b and z, we may set H = H0. If M ≤ (2λ)2, any choice H0 ≥ (2λ)2 su�ces. So we may
assume M > (2λ)2.

Fix z′ ∈ S1 with d(g(z′), g(x)) > 2Lg(x, 2r). Then

2Lg(x, 2r) < d(g(z′), g(z)) + d(g(z), g(x)) ≤ d(g(z′), g(z)) + Lg(x, 2r) and
2−1` ≤ 2−1(d(g(a), g(x)) + d(g(x), g(z))) ≤ Lg(x, 2r).

Therefore 2−1` < d(g(z′), g(z)). We conclude that

g(a), g(z′) ∈ ∂Y \ BY
(
g(z), `2

)
and g(b) ∈ ∂Y ∩ BY

(
g(z), `M

)
.

Let A′ be the subarc of ∂Y joining g(a) to g(z′) that does not contain g(z). Then any arc joining A′ to g(z)
within ∂Y must pass through either g(a) or g(z′). Using this fact, the bounded turning of ∂Y yields

A′ ⊂ ∂Y \ BY
(
g(z), λ−1 `2

)
. (4.1)

Let B′ be the subarc of ∂Y with smallest diameter which ends at g(b) and g(z). The bounded turning of ∂Y
implies that

B′ ⊂ BY
(
g(z), λ `M

)
. (4.2)

The inclusions (4.1) and (4.2) imply that every path γ ∈ Γ(A′, B′; Y) has a subpath joining Y \ BY (g(z), λ
−1 `

2 )
to BY

(
g(z), λ `M

)
within BY (g(z), λ

−1 `
2 ). Then Lemma 2.8 yields

C̃U
log M

2λ2
≥ mod Γ(A′, B′; Y). (4.3)

Let A = g−1(A′) and B = g−1(B′). The relative distance ∆(A, B) satis�es

∆(A, B) := d(A, B)
min {diamA, diam B} ≤ 2. (4.4)
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First, d(A, B) ≤ ‖a − z‖2 since a ∈ A and z ∈ B. Second, diamA ≥
∥∥a − z′

∥∥
2 ≥ r, so ‖a − x‖2 ≤ r and

‖x − z‖2 ≤ r imply 2−1 ‖a − z‖2 ≤ r. Lastly, diam B ≥ ‖b − z‖2 ≥ ‖a − z‖2. These imply (4.4).
The 2-Loewner property of D [11, Example 8.24] states that there exists a constant C2 > 0 for which

mod Γ(A, B;D) ≥ C2 (4.5)

depending only on the upper bound (4.4). The K-quasiconformality of the extension Φ implies that
mod Γ(A′, B′; Y) ≥ K−1mod Γ(A, B;D). Combining this inequality with (4.3) and (4.5) yields an upper bound
on M in terms of C2, K, C̃U , and λ. Setting H0 to be the maximum of this bound and (2λ)2 establishes the
claim.

5 Planar quasicircles
We prove Theorem 1.5 in this section. The main result of this section is the following.

Proposition 5.1. Under the assumptions of Theorem 1.5, the Assouad dimension of ∂Y is strictly less than 2.

Proof of Theorem 1.5 assuming Eq. (5.1).. Equation (5.1) states that ∂Y has Assouad dimension strictly less
than 2. Having veri�ed this, [13] yields the existence of a bi-Lipschitz embedding h : ∂Y → R2, i.e., ∂Y is
planar.

So Theorem 1.5 follows from Proposition 5.1. We split the proof of Proposition 5.1 into a couple of sublem-
mas.

Lemma 5.2. Suppose that ∂Y has λ-bounded turning and satis�es (a) in Theorem 1.5. Then there exists a
constant Cp ≥ 1 depending only on λ such that for every x ∈ ∂Y and 0 < r < min {r0, diam ∂Y}, there exists
y ∈ Y with BY (y, C

−1
p 2r) ⊂ BY (x, r) \ ∂Y.

Proof. This is only a small modi�cation of the proof of Theorem 8.2 of [17] but we include the details here for
the convenience of the reader. Let s = 8λ2(2λ + 1) and Cp = 8λs. Let x ∈ ∂Y and 0 < r < min {r0, diam ∂Y}.
We claim that there exists a point v ∈ Y such that

BY
(
v, C−1p 2r

)
⊂ BY (x, r) \ ∂Y . (5.1)

Suppose for now that r < (4λ)−1min {r0, diam ∂Y}. Then there exists a point z ∈ ∂Y for which d(x, z) ≥
2λr. We �x such a z.

Let |γ| denote the (closure of the) subarc of ∂Y \
{
w ∈ ∂Y : d(x, w) = r

4λ
}
that contains x. Let a and b

denote the end points of |γ| labelled in such a way that {x, a, z, b} is cyclically ordered on ∂Y. We have that
d(x, a) = d(x, b) = r

4λ and |γ| ⊂ BY
(
x, r

4λ
)
.

The relativeALLC condition of ∂Y implies that there exists a path α joining a to b in BY
(
x, r4

)
\BY

(
x, r

8λ2
)
.

We assume without loss of generality that α is an arc.
Let |γa| denote the (closure of the) component of ∂Y \ {x, z} joining x and z that contains a and let |γb|

be the other component. Observe that d(a, |γb|) ≥ (8λ2)−1r since otherwise we would �nd an arc |γ′| joining
|γb| to a within ∂Y for which (8λ)−1r ≥ diam |γ′|. This would imply the contradiction (8λ)−1r ≥ d(a, {x, z}).

The lower boundon d(a, |γb|) and connectedness of |α| imply the existence of v ∈ |α| such that d(v, |γb|) =
r
s . Fix such a v. Suppose that there exists w ∈ |γa| for which d(v, w) < r

s . Then d(w, |γb|) < 2 rs and there exists
a path β′ joining w to |γb| within ∂Y for which diam |β′| < 2λ rs . Since |β′| contains either x or z, we have

d(v, {x, z}) ≤ d(w, {x, z}) + d(v, w) < 2λ rs +
r
s =

r
8λ2 .

This is a contradiction with the facts d(x, z) > 2λr and v ∈ |α| ⊂ BY
(
x, r4

)
\ BY

(
x, r

8λ2
)
. Since no such w

exists, d(v, |γa|) ≥ r
s . Consequently, BY

(
v, rs

)
⊂ BY (x, r) \ ∂Y.
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If (4λ)−1min {r0, diam ∂Y} ≤ r < min {r0, diam ∂Y}, then there exists a point v ∈ Y such that

BY
(
v, r

4λs

)
⊂ BY

(
x, r4λ

)
\ ∂Y ⊂ BY (x, r) \ ∂Y .

In either case, (5.1) holds.

Let r1 = min {r0, diam ∂Y}, where r0 is the parameter from the assumptions of Theorem 1.5. There exists
a constant C ≥ 1 with the following properties:

(i) For every y ∈ ∂Y and every 0 < r, H2
Y (BY (y, r)) ≤ Cr

2. Moreover, for every y ∈ ∂Y and every 0 < r < r1,
H2
Y (BY (y, r)) ≥ C

−1r2.
(ii) For every y ∈ ∂Y and 0 < r < r1, there exists z ∈ Y such that BY (z, C

−12r) ⊂ BY (y, r) \ ∂Y.
(iii) For every z ∈ Y with d(z, ∂Y) ≤ r1 and every 0 < r < d(z, ∂Y), C−1r2 ≤ H2

Y (BY (z, r)).

Remark 5.3. We have assumed that for all radii 0 < r < diam ∂Y and every y ∈ ∂Y, H2
Y (BY (y, r)) ≤

C′r2 for some C′ > 0. Then the upper bound in (i) holds for every r > 0 if we replace C′ with C′′ =
max

{
C′,H2

Y (Y)/(diam ∂Y)2
}
. The lower bound for such balls follows from Lemma 4.2.

The property (ii) follows from Lemma 5.2 for some constant. Recall that, under the assumptions of Theo-
rem 1.5, the lower bound in (iii) holds for each 0 < r < d(z, ∂Y) ≤ r0 for some constant C′. Hence (iii) follows.

Our claim is qualitative, so we use a uniform constant C for these various conditions.

In the following, if B is a ball and ξ > 0, ξB refers to the ball with the same center and ξ times the radius.

Lemma 5.4. There exists a collection B of pairwise disjoint balls in Y = Y \ ∂Y such that for every (y, r) ∈
∂Y × (0, r1) there exists a ball B ∈ B with

r1/2 > max
{
d(∂Y , B), diam B

}
and diam B ' r ' d(y, B) ' d(∂Y , B), (5.2)

where A1 ' A2 means that there exists a constant of comparability D > 0 for which D−1A1 ≤ A2 ≤ DA1. Here
the constants of comparability depend only on the constant C.

Proof of Lemma 5.4. For each x ∈ ∂Y and each integer m such that 0 < 2m < r1, consider a point vx,m ∈ Y =
Y \ ∂Y with BY (vx,m , C

−12m+1) ⊂ BY (x, 2
m) \ ∂Y. Then the ball Bx,m := BY (vx,m , C

−12m) satis�es

diam Bx,m ' 2m ' d(x, Bx,m) ' d(∂Y , Bx,m) (5.3)

with the constants of comparison depending only on C.
For each m ∈ Z with 2m < r1, let Bm denote the collection of the Bx,m as x ∈ ∂Y varies. The 5r-covering

theorem [8, 2.8.4] states that there exists subcollectionB′
m ⊂ Bm whose elements are pairwise disjoint and

⋃

B∈Bm

B ⊂
⋃

B∈B′
m

5B. (5.4)

Let 1 ≤ N ∈ N and m1 ∈ Z with 2m1 < r1 ≤ 2m1+1. Consider the collectionB =
⋃∞
k=1B

′
m1−kN .

By choosing a su�ciently large N, the elements of B are pairwise disjoint and each element satis�es
max

{
d(∂Y , B), diam B

}
< r1/2. The choice of N depends only on the constants in (5.3). The inclusion (5.4)

implies that for each 0 < r < r1 and x ∈ ∂Y, there exists B ∈ B such that (5.3) holds with Bx,m replaced by B
and 2m by r, with constants of comparison depending only on C. Then (5.2) follows.

We �x arbitrary 0 < ϵ < 1, 0 < r < r1 and y ∈ ∂Y. Let N = BY (y, 2r) ∩
{
x ∈ Y : d(∂Y , x) < 2−1ϵr

}
. Let

B0 ⊂ B denote the subcollection consisting of all B ∈ B with B ⊂ BY (y, 4r) with diameter at least aϵr for
a > 0.

Lemma 5.5. There exist 1 > a > 0, b > 0 and ξ > 1, with the choices depending only on the constants of
comparability in (5.2), such that

T(x) :=
∑

B∈B0

χξB(x) ≥ −b log(ϵ) for all x ∈ N, (5.5)
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where χξB is the characteristic function of the ball ξB.

Proof of Lemma 5.5. For each (w, s) ∈ B(y, 3r) ∩ ∂Y × (0, r1), let Bs(w) ∈ B be the ball obtained from
Lemma 5.4. Lemma 5.4 implies the existence of A > 1 for which A−1s ≤ diam Bs(w) < As and for the cen-
ter cs(w) of Bs(w), A−1s ≤ d(w, cs(w)) < As.

Let 0 < a < A−2. Then for every Aaϵr ≤ s < r/A, we have Bs(w) ∈ B0. Moreover, if ξ ≥ 3a−1, the radius of
ξBs(w) is bounded from below by 3a−1 diam Bs(w)/2. Given z ∈ B(w, 2−1ϵr),

d(cs(w), z) < s/(2Aa) + d(cs(w), w) ≤ (a−1 + 2A2)
diam Bs(w)

2 .

Thus ξBs(w) ⊃ B(w, 2−1ϵr).
Let k ∈ Z be the largest integer for which Aaϵr < r/A2k+1. Let

{
s̃i
}k
i=1 be a strictly increasing sequence

in the interval
(
Aaϵr, r/A2k+1

)
. Denote si = A2(i−1) s̃i for each i = 1, 2, . . . k. Here sk < r/A and Asi−1 < A−1si

for each i. Hence the collection
{
Bsi (w)

}k
i=1 contains k di�erent balls. This implies

T(z) ≥ k for every z ∈ B(w, 2−1ϵr). (5.6)

We set now a = A−4, ξ = 3a−1, and b = 1/(2 log(A)). The maximality of k implies k ≥ −b log(ϵ).
If z ∈ N, there exists wz ∈ ∂Y such that d(wz , z) = d(∂Y , z) < 2−1ϵr. In particular, wz ∈ B(y, 3r) ∩ ∂Y

and z ∈ B(wz , 2−1ϵr). Then (5.6) implies (5.5) for the constants a, ξ , and b.

Lemma 5.6. Let a, b, ξ , and B0 be as in Lemma 5.5. There exists a constant d ≥ 1, depending only on the
constants of comparability in (5.2) and C, such thatH2

Y (5ξB) ≤ dH
2
Y (B) for every B ∈ B0.

Proof of Lemma 5.6. Consider B ∈ B0. Then 5ξB ⊂ BY (y, ρ) for some y ∈ ∂Y such that 5ξ diam B '
5ξd(y, B) ' 5ξd(∂Y , B) ' ρ, depending only on the constants of comparability in (5.2). The mass upper
bound (i) yields H2

Y (5ξB) ≤ Cρ
2 ' C25ξ2(diam B)2. Given (5.2), we have max

{
diam B, d(B, ∂Y)

}
< r1/2.

Hence the lower bound from (iii) implies (diam B)2 ≤ CH2
Y (B). The existence of d follows.

Proof of Proposition 5.1. The claim is that there exist 0 < δ < 2 and C̃ > 0 such that for every 0 < ϵ < 1, every
0 < r < diam ∂Y, and every y ∈ ∂Y, any ϵr-separated set E ⊂ B(y, r) ∩ ∂Y satis�es #E ≤ C̃ϵ−δ.

Suppose that the claim holds whenever 0 < r < r1. Consider r1 ≤ r < diam ∂Y. Let E0 ⊂ ∂Y be a maximal
r1/2-separated net. For every f ∈ E0, the set Ef = B(f , r1/2) ∩ E is ϵr1/2-separated. Since E =

⋃
f∈E0 Ef , we

have #E ≤
∑

f∈E0 #Ef ≤ #E0C̃ϵ
−δ. So the general case follows from the special one.

Now we prove the claim for each 0 < r < r1, 0 < ϵ < 1, and y ∈ ∂Y. We choose a, b and ξ as in Lemma 5.5
and letB0 ⊂ B be the collection de�ned before the statement Lemma 5.5. The collectionB0 has the following
properties:

A1. supB∈B0 diam B < ∞;
A2. 0 < H2

Y (5ξB) ≤ dH
2
Y (B) for each B ∈ B0;

A3. the balls inB0 are pairwise disjoint;
A4. the measure of S :=

⋃
B∈B0

B ⊂ BY (y, 4r) is �nite.

Lemma 5.6 implies that the constant d in A2 can be chosen to be independent of y, r, and ϵ.
Having veri�ed properties A1-A4, [4, Theorem 9.6 (b)] explicitly states for µ = 1/12d2 the following:

H2
Y
({
x ∈ BY (y, 2r) : T(x) ≥ −b log(ϵ)

})
≤ (1 + d)H2

Y (S)e
−µ(−b log(ϵ)).

Given that S ⊂ BY (y, 4r), the upper bound in (i) implies

H2
Y
({
x ∈ BY (y, 2r) : T(x) ≥ −b log(ϵ)

})
≤ (1 + d)(C(4r)2)ϵµb . (5.7)

Let E ⊂ BY (y, r) ∩ ∂Y be an ϵr-separated set. We see from (5.5) and the lower bound in (i) that

H2
Y
({
x ∈ BY (y, 2r) : T(x) ≥ −b log(ϵ)

})
(5.8)
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≥H2
Y (N) ≥ H

2
Y

(⋃

z∈E
B(z, 2−1ϵr)

)
≥ (#E)C−1(2−1ϵr)2.

Now (5.7) and (5.8) yield #E ≤ C̃ϵ−(2−µb), where C̃ is independent of y, r, and ϵ. We denote δ := 2− µb < 2. The
claim follows.

6 Concluding remarks
Consider any quasiconformal Jordan domain Y and ϕ as in Theorem 1.1. Since ϕ is a homeomorphism, the
Jacobian Jϕ of ϕ satis�es

Area(ϕ) :=
∫

D

Jϕ dL2 ≤ H2
Y (Y) < ∞. (6.1)

The number Area(ϕ) is called the parametrized area of ϕ.
Lytchak and Wenger consider in [16, Section 1.2] the class Λ(∂Y , Y) of those u ∈ N1,2(D; Y) whose trace

u′ : S1 → Y is a (weakly) monotone parametrization of ∂Y. Associated to such maps, one de�nes Area(u) by
integrating a Jacobian of u [16, Section 1.2]. Also, E(u) =

∫
D ρ

2
u dL2 is the corresponding energy.

Theorem 1.1 implies that every quasiconformal homeomorphism ϕ : D → Y de�nes an element of
Λ(∂Y , Y). If ϕ is K-quasiconformal, then E(ϕ) ≤ KArea(ϕ) < ∞ due to (6.1). Then [16, Theorem 7.6] yields
the existence of ue ∈ Λ(∂Y , Y) with minimal E(u) among all u ∈ Λ(∂Y , Y), referred to as an energy mini-
mizer. Similarly, [16, Theorem 1.1] yields the existence of ua ∈ Λ(∂Y , Y) of minimal parametrized area.

For a general quasiconformal Jordandomain Y, it is not clearwhether or not ue (or ua) is a quasiconformal
homeomorphism. However, if we also assume that Y is geodesic, ∂Y is recti�able, and Y satis�es a quadratic
isoperimetric inequality and (1.2) at the boundary points of Y, the energy minimizer ue is a quasiconformal
homeomorphism [6, Theorem 1.3]. We refer the interested reader to [16] and [6] for further reading.

There are some ways to construct quasiconformal Jordan domains. For example, if X is a metric
surface satisfying local versions of annular linear local connectivity and Ahlfors 2-regularity, Theorem
4.17 of [25] yields the existence of many quasiconformal Jordan domains Y ⊂ X satisfying the assumptions
of Theorem 1.5. Some examples of quasiconformal Jordan domains can also be obtained from [10, Theorem 2].

Acknowledgements: The author was supported by the Academy of Finland, project number 308659 and
by the Vilho, Yrjö and Kalle Väisälä Foundation. The author wishes to thank the referee for their helpful
suggestions.
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TWO-DIMENSIONAL METRIC SPHERES FROM GLUING HEMISPHERES

TONI IKONEN

Abstract. We study metric spheres (Z, dZ) obtained by gluing two hemispheres
of S2 along an orientation-preserving homeomorphism g : S1 → S1, where dZ is
the canonical distance that is locally isometric to S2 off the seam.

We show that if (Z, dZ) is quasiconformally equivalent to S2, in the geometric
sense, then g is a welding homeomorphism with conformally removable weld-
ing curves. We also show that g is bi-Lipschitz if and only if (Z, dZ) has a 1-
quasiconformal parametrization whose Jacobian is comparable to the Jacobian of
a quasiconformal mapping h : S2 → S2. Furthermore, we show that if g−1 is ab-
solutely continuous and g admits a homeomorphic extension with exponentially
integrable distortion, then (Z, dZ) is quasiconformally equivalent to S2.

1. Introduction

In this paper, we work in the unit sphere S2 ⊂ R3. We denote the equator
S2 ∩

(
R2 × {0}

)
by S1 and endow S2 with the length distance σ induced by the

Euclidean distance of R3. The open southern and northern hemispheres are de-
noted by Z1 and Z2, respectively. Here (0, 0, 1) ∈ Z2.

Consider an orientation-preserving homeomorphism g : S1 → S1, mapping
the boundary of Z1 to the boundary of Z2. We identify each z ∈ S1 with its
image g(z) ∈ S1. With this identification, we obtain a set Z and inclusion maps
ι1 : Z1 → Z and ι2 : Z2 → Z. We call SZ = ι1(S

1) = ι2(S
1) the seam of Z.

We construct a pseudodistance dZ on Z, see Section 3, making the inclusion
maps local isometries off the seam and 1-Lipschitz everywhere. We consider the
quotient map Q : Z → Z̃ identifying points x, y ∈ Z whenever dZ(x, y) = 0, and
endow Z̃ with the associated quotient distance.

We are interested in this construction for the following reason: whenever the
metric space Z̃ is quasiconformally equivalent to S2, there exist Riemann maps
φ1 : Z1 → Ω1, φ2 : Z2 → Ω2 onto the complementary components of a Jordan
curve C with g = φ−1

2 ◦ φ1|S1 ; with the Carathéodory theorem we can make sense
of the composition φ−1

2 ◦ φ1|S1 [GM05]. Any such g is called a welding homeomor-
phism and C a welding curve. A long-standing problem is to understand which
homeomorphisms g satisfy g = φ−1

2 ◦ φ1|S1 for some Riemann maps. We refer to
the survey articles [Ham02], [You15] for further background information.

We also investigate the properties of Z̃, given an arbitrary welding homeomor-
phism g. We show in Section 4 that the 1-dimensional Hausdorff measures on
the seam Q(SZ) and on (the tangents of) C are closely connected, using results
from classical complex analysis [GM05]. For example, our results show that a
given subarc of the welding curve has tangents only in a set negligible to the
1-dimensional Hausdorff measure if and only if the quotient map Q collapses the
corresponding part of the seam to a point.

2010 Mathematics Subject Classification. Primary 30L10, Secondary 30C65, 28A75, 51F99, 52A38.
Key words and phrases. Quasiconformal, metric surface, reciprocality, gluing, welding.
The author was supported by the Academy of Finland, project number 308659 and by the Vilho,

Yrjö and Kalle Väisälä Foundation.
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We present in Sections 7.1 and 7.2 examples illustrating that for some home-
omorphisms g, after removing a portion E′ of the seam Q(SZ), one can find a
1-quasiconformal embedding ψ : Z̃ \ E′ → S2, but not necessarily a quasiconfor-
mal homeomorphism Ψ : Z̃ → S2. A similar phenomenom was investigated in
[Ham91] and [Bis07b] in more detail.

We now state our first result.

Theorem 1.1. Let g : S1 → S1 be an orientation-preserving homeomorphism. The fol-
lowing are quantitatively equivalent.

(1) g is L-bi-Lipschitz;
(2) there exists an L′-bi-Lipschitz homeomorphism Ψ : Z̃ → S2;
(3) there exists C′ ≥ 0 such that for every y ∈ Q(SZ),

lim inf
r→0+

H2
Z̃
(BZ̃(y, r))

πr2 ≤ C′.

In the implications "(1)⇒ (2)" we may take L′ = L, in "(2)⇒ (3)" C′ = (L′)4, and in
"(3)⇒ (1)" L = πC′.

We prove "(1)⇒ (2)" by observing that if g : S1 → S1 admits an L′-bi-Lipschitz
extension φ : Z2 → Z2, the space Z̃ has an L′-bi-Lipschitz parametrization. That
we may take L′ = L in "(1)⇒ (2)", follows by applying a known planar extension
result [Kal14] and stereographic projection.

The claim "(2) ⇒ (3)" is a straightforward consequence of the properties of
Hausdorff measures. The implication "(3)⇒ (1)" is proved by carefully analyzing
the behaviour of the inclusion mappings ιi : Zi → Z̃ at the equator S1. Notice that
the ιi are 1-Lipschitz everywhere and local isometries outside the equator. This
implies C′ ≥ 1 in (3). Remark 5.9 shows two ways to improve the bi-Lipschitz
constant πC′. The improvements imply that as C′ → 1+ in (3), the bi-Lipschitz
constant of g converges to one. In particular, (3) holds with C′ = 1 if and only if
g is an isometry.

Theorem 1.1 is closely related to the following result.

Theorem 1.2. If an orientation-preserving homeomorphism g : S1 → S1 is L-bi-Lipschitz,
there exists a 1-quasiconformal homeomorphism ϕ : S2 → Z̃ and a K-quasiconformal
homeomorphism h : S2 → S2 such that the Jacobians satisfy

(1) C−1 Jh(x) ≤ Jϕ(x) ≤ CJh(x) for H2
S2 -a.e. x ∈ S2

for K = L4 and C = L2. Conversely, if there exists K, C, and h for which (1) holds, then
g is π(KC)2-bi-Lipschitz.

The Jacobians are defined in Section 2.3. We note that if h : S2 → S2 is an
orientation-preserving quasiconformal homeomorphism, the Jh coincides with
the usual distributional Jacobian; see for example [AIM09, Section 3.8].

If g is L-bi-Lipschitz, the existence of ϕ and h is a straightforward consequence
of the implication "(1)⇒ (2)" in Theorem 1.1. If h and ϕ exist, we first check that
Ψ = h ◦ ϕ−1 is bi-Lipschitz, the study of the seam requiring a careful argument,
and use the implications "(2) ⇒ (3) ⇒ (1)" from Theorem 1.1 to verify that g is
bi-Lipschitz.

Theorem 1.2 is a special case of the quasiconformal Jacobian problem: which
weights ω : S2 → [0, ∞] are comparable to the Jacobians of quasiconformal home-
omorphisms h : S2 → S2; see [BHS04], [Bis07a], and references therein for further
reading.

Given that (1) and (3) are equivalent in Theorem 1.1, it is not entirely clear
for which classes of homeomorphisms one can expect Z̃ to be quasiconformally
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equivalent to S2, or what kind of geometric properties one can expect from such
a Z̃.

Question 1.3. Let Z̃ be the metric space obtained from a homeomorphism g : S1 →
S1. When can we find a quasiconformal homeomorphism ψ : Z̃ → S2? What kind of
restrictions does this impose on g?

As an example, if g is a welding homeomorphism corresponding to the von
Koch snowflake, then dZ(x, y) = 0 for every pair of points in the seam, see Re-
mark 4.2. Hence Z̃ can fail to be quasiconformally equivalent, or homeomorphic,
to S2 when g is a quasisymmetry. We show that a simple measure-theoretic as-
sumption removes this obstruction.

Proposition 1.4. Let g : S1 → S1 be a quasisymmetry whose inverse is absolutely con-
tinuous. Then Z̃ is quasiconformally equivalent to S2.

The absolute continuity of g−1 is used in two ways. First, it guarantees that
Z̃ = (Z, dZ). Second, if ψ : Z2 → Z2 is a quasisymmetric extension of g, we show
that the homeomorphism H : S2 → Z̃ satisfying H|Z1 = ι1 and H|Z2 = ι2 ◦ ψ|Z2
is quasiconformal. A key step in the proof is showing the Sobolev regularity
H−1 ∈ N1,2(Z̃, S2); the absolute continuity of g−1 is applied here.

Proposition 1.4 is a special case of the following stronger result.

Theorem 1.5. Let g : S1 → S1 be an orientation-preserving homeomorphism whose
inverse is absolutely continuous. If g extends to a homeomorphism ψ : Z2 → Z2 for
which ψ|Z2 has exponentially integrable distortion, then Z̃ is quasiconformally equivalent
to S2.

We now explain the main steps of the proof of Theorem 1.5. We first show
that there exists a homeomorphism H : S2 → Z̃ with exponentially integrable
distortion. We also have H−1 ∈ N1,2(Z̃, S2); see Remark 6.8. The exponen-
tial integrability of distortion of H is used to verify the reciprocality condition
of Z̃, see Definition 2.5. Then [Raj17, Theorem 1.4] shows that Z̃ is quasicon-
formally equivalent to S2. The key ingredients in the proof are the condenser
estimates for mappings of exponentially distortion [KO06], applicable because
H−1 ∈ N1,2(Z̃, S2), and the Stoilow factorization theorem [AIM09, Chapter 20].
There are some known criteria which guarantee that g admits an extension as in
Theorem 1.5; see [Zak08] [KN21].

In Section 7.1, we present an example of g : S1 → S1 that is locally bi-Lipschitz
outside a single point, but for which Z̃ is not quasiconformally equivalent to S2.
This illustrates that the absolute continuity of g−1 is not enough to guarantee that
Z̃ is quasiconformally equivalent to S2. This fact is a consequence of the following
result, partially answering Question 1.3.

Theorem 1.6. Suppose that g : S1 → S1 is an orientation-preserving homeomorphism
for which there exists a quasiconformal homeomorphism h : S2 → Z̃. Then Z̃ = (Z, dZ)

and there exists a 1-quasiconformal homeomorphism π : S2 → Z̃. Furthermore, g is a
welding homeomorphism whose welding curves are conformally removable.

The first step in the proof of Theorem 1.6 is showing that h can be assumed
to be 1-quasiconformal. Then, up to an orientation-reversing Möbius transfor-
mation, φi = h−1 ◦ ιi : Zi → S2 are Riemann maps with welding curve C =

h−1(Q(SZ)) and welding homeomorphism φ−1
2 ◦ φ1|S1 . The equality Z̃ = (Z, dZ)

and the conformal removability of C follow from a connection we show between
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the tangents of the welding curve C and the Hausdorff 1-measure on the seam
Q(SZ); see Section 4. The equality Z̃ = (Z, dZ) implies g = φ−1

2 ◦ φ1|S1 .
We recall that a compact proper subset K ⊂ S2 is conformally removable if every

homeomorphism M : S2 → S2 conformal in S2 \ K is Möbius. The von Koch
snowflake example illustrates that conformal removability of a welding curve C
is not enough to guarantee even that Z̃ is homeomorphic to S2. We refer the
reader to [You15] and [You18] for further reading on conformal weldings and the
connections to conformal removability. See [HK03] for some results in the context
of Theorem 1.5.

The paper is structured as follows. In Section 2, we introduce our notations
and some preliminary results. In Section 3, we analyze the distance dZ induced
by any given homeomorphism g : S1 → S1. When g is a welding homeomorphim,
we establish in Section 4 a connection between the geometry of the seam SZ and
the tangents of the corresponding welding curves C. We also prove Theorem 1.6
in this section. In Section 5, we prove Theorems 1.1 and 1.2. Proposition 1.4
and Theorem 1.5 are proved in Section 6. In Section 7, we give some concluding
remarks.

2. Preliminaries

2.1. Notation. Let (Y, dY) be a metric space. We sometimes drop the subscript
from dY when there is no chance for confusion. For all Q ≥ 0, the Q-dimensional
Hausdorff measure, or a Hausdorff Q-measure, is defined by

HQ
Y (B) =

α(Q)

2Q sup
δ>0

inf

{
∞

∑
i=1

(diam Bi)
Q : B ⊂

∞⋃

i=1

Bi, diam Bi < δ

}

for all sets B ⊂ Y, where α(Q) is chosen so that Hn
Rn coincides with the Lebesgue

measure Ln for all positive integers.
The length of a path γ : [a, b]→ Y is defined as

`d(γ) = sup
n

∑
i=1

d(γ(ti), γ(ti+1)),

the supremum taken over all finite partitions a = t1 ≤ t2 ≤ · · · ≤ tn+1 = b. A
path is rectifiable if it has finite length.

The metric speed of a path γ : [a, b]→ Y at the point t ∈ [a, b] is defined as

vγ(t) = lim
t 6=s→t

d(γ(s), γ(t))
|s− t|

whenever this limit exists. The limit exists L1-almost everywhere for every recti-
fiable path [Dud07, Theorem 2.1].

A rectifiable path γ : [a, b]→ Y is absolutely continuous if for all a ≤ s ≤ t ≤ b,

d(γ(t), γ(s)) ≤
∫ t

s
vγ(u) dL1(u)

with vγ ∈ L1([a, b]) and L1 the Lebesgue measure on the real line. Equivalently,
the rectifiable path γ is absolutely continuous if it maps sets of L1-measure zero
to sets of H1

Y-measure zero [Dud07, Section 3].
Let γ : [a, b] → X be an absolutely continuous path. Then the (path) integral of

a Borel function ρ : X → [0, ∞] over γ is

(2)
∫

γ
ρ ds =

∫ b

a
(ρ ◦ γ)vγ dL1.
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If γ is rectifiable, then the path integral of ρ over γ is defined to be the path
integral of ρ over the arc length parametrization γs of γ; see [HKST15, Chapter 5]
for further details.

Given a Borel set A ⊂ Y, the length of a path γ : [a, b] → Y in A is defined as∫
Y χA(y)#(γ−1(y)) dH1

Y(y), where #(γ−1(x)) is the counting measure of γ−1(x).
For A = Y, [Fed69, Theorem 2.10.13] states

(3) `(γ) =
∫

Y
#(γ−1(y)) dH1

Y(y).

When γ is rectifiable, for every Borel function ρ : Y → [0, ∞],

(4)
∫

γ
ρ ds =

∫

Y
ρ(y)#(γ−1(y)) dH1

Y(y).

The equality (4) follows from [Fed69, Theorem 2.10.13] via a standard approxi-
mation argument using simple functions.

2.2. Metric Sobolev spaces. In this section we give an overview of Sobolev the-
ory in the metric surface setting, and refer to [HKST15] for a comprehensive
introduction.

Let Γ be a family of paths in Y. A Borel function ρ : Y → [0, ∞] is admissible for
Γ if the path integral

∫
γ ρ ds ≥ 1 for all rectifiable paths γ ∈ Γ. Given 1 ≤ p < ∞,

the p-modulus of Γ is

modp Γ = inf
∫

Y
ρp dH2

Y,

where the infimum is taken over all admissible functions ρ. Observe that if Γ1
and Γ2 are path families and every path γ1 ∈ Γ1 contains a subpath γ2 ∈ Γ2, then
modp Γ1 ≤ modp Γ2. In particular, this holds if Γ1 ⊂ Γ2. When p = 2, and there
is no chance for confusion, we omit the subscript from mod2.

If ρ is admissible for a path family Γ \ Γ0, where modp Γ0 = 0, we say that ρ
is p-weakly admissible for Γ. If a property holds for every path γ ∈ Γ except in a
subfamily of p-modulus zero, the property is said to hold on p-almost every path
in Γ. We also refer to 2-almost every path as almost every path.

We recall the following lemma [HKST15, Lemma 5.2.8].

Lemma 2.1. Let 1 ≤ p < ∞. A family of nonconstant paths Γ satisfies modp Γ = 0 if
and only if there exists ρ : Y → [0, ∞], ρ ∈ Lp(Y) with

∞ =
∫

γ
ρ ds for every γ ∈ Γ.

Let ψ : (Y, dY) → (Z, dZ) be a mapping between metric spaces Y and Z. A
Borel function ρ : Y → [0, ∞] is an upper gradient of ψ if

dY(ψ(x), ψ(y)) ≤
∫

γ
ρ ds

for every rectifiable path γ : [a, b] → Y connecting x to y. The function ρ is a
p-weak upper gradient of ψ if the same holds for p-almost every rectifiable path.

A p-weak upper gradient ρ ∈ Lp
loc(Y) of ψ is minimal if it satisfies ρ ≤ ρ̃ almost

everywhere for all p-weak upper gradients ρ̃ ∈ Lp
loc(Y) of ψ. If ψ has a p-weak

upper gradient ρ ∈ Lp
loc(Y), then ψ has a minimal p-weak upper gradient, which

we denote by ρψ. We refer to Section 6 of [HKST15] and Section 3 of [Wil12] for
further details. Minimal 2-weak upper gradients are also refered to as minimal
weak upper gradients.

Fix a point z ∈ Z, and let dz = dZ(·, z). The space Lp(Y, Z) is defined as the
collection of measurable maps ψ : Y → Z such that dz ◦ ψ is in Lp(Y). Moreover,
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Lp
loc(Y, Z) is defined as those measurable maps ψ : Y → Z for which, for all y ∈ Y,

there is an open set U ⊂ Y containing y such that ψ|U is in Lp(U, Z).
The metric Sobolev space N1,p

loc (Y, Z) consists of those maps ψ : Y → Z in
Lp

loc(Y, Z) that have a minimal p-weak upper gradient ρψ ∈ Lp
loc(Y).

For subsets ∅ 6= U ⊂ Y, we say that ψ ∈ N1,p(U, Z) if ψ|U ∈ N1,p
loc (U, Z),

ρψ|U ∈ Lp(U) and ψ|U ∈ Lp(U, Z). If Z = R, we denote N1,p(U, Z) = N1,p(U),
and in the case p = 2,

E(ψ) := 2−1 ∥∥ρψ

∥∥2
L2(U)

.

We refer to E(ψ) as the Dirichlet energy of ψ.
We repeatedly use the following technical lemma in later sections.

Lemma 2.2. Let ψ : Y → Z be continuous, ρ : Y → [0, ∞] a Borel function and
γ : [0, 1]→ Y absolutely continuous with

∫
γ ρ ds < ∞.

Suppose that E ⊂ Y is compact, H1
Z(ψ(E)) = 0, and `(ψ ◦ γ|I) ≤

∫
γ|I ρ ds for each

closed interval I ⊂ [0, 1] \ γ−1(E). Then `(ψ ◦ γ) ≤
∫

γ ρ ds.

Proof. First, for every closed interval J ⊂ [0, 1] \ γ−1(E), ψ ◦ γ|J is absolutely
continuous with vψ◦γ(s) ≤ (ρ ◦ γ)(s)vγ(s) for L1-almost every s ∈ J. This follows
from [HKST15, Proposition 6.3.2].

Second, consider the connected components {Ii}∞
i=1 of [0, 1] \ (ψ ◦ γ)−1(ψ(E)).

Notice that Ii ⊂ [0, 1] \ γ−1(E) for every i.
Let Ji = Ii. Then vψ◦γ(s) ≤ (ρ ◦ γ|Ji )(s) L1-almost everywhere on Ji (on Ii).

This fact, the continuity of ψ ◦ γ and
∫

γ ρ ds < ∞ imply

`(ψ ◦ γ|Ji ) ≤
∫

Ii

(ρ ◦ γ)vγ ds < ∞.

By summing over i, we conclude
∞

∑
i=1

`(ψ ◦ γ|Ji ) ≤
∫
⋃∞

i=1 Ii

(ρ ◦ γ)vγ ds ≤
∫

γ
ρ ds.

Given H1
Z(ψ(E)) = 0, (3) and (4) imply

`(ψ ◦ γ) =
∫

Z\ψ(E)
#((ψ ◦ γ)−1(x)) dH1

Z(x)

≤
∞

∑
i=1

∫

Z\ψ(E)
#((ψ ◦ γ|Ji )

−1(x)) dH1
Z(x)

=
∞

∑
i=1

`(ψ ◦ γ|Ji ) ≤
∫

γ
ρ ds.

Hence `(ψ ◦ γ) ≤
∫

γ ρ ds. �

2.3. Measure theory. Let Y be a Borel subset of a complete and separable metric
space. A Borel measure µ on Y is σ-finite if there exists a Borel decomposition
{Bi}∞

i=1 of Y for which µ(Bi) < ∞ for every i.
A pair of σ-finite Borel measures µ and ν on Y are said to be mutually singular if

there exists a Borel set B ⊂ Y such that µ(B) = 0 and ν(Y \ B) = 0. The measure
µ admits a Lebesgue decomposition (with respect to ν), where µ = f · ν + µ⊥, with
µ⊥ and ν mutually singular and f Borel measurable [Bog07, Sections 3.1-3.2 in
Volume I]. We say that µ and ν are mutually absolutely continuous if µ = f · ν with
density f > 0 ν-almost everywhere.
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Given a homeomorphism ψ : Y → Z and measures ν on Y and µ on Z, the
measure ψ∗µ(B) = µ(ψ(B)) is called the pullback measure. Such a measure admits
a decomposition ψ∗µ = f · ν + µ⊥ with ν and µ⊥ mutually singular. If ν = H2

Y
and µ = H2

Z, the density f is called the Jacobian of ψ and denoted by Jψ.

2.4. Quasiconformal mappings. Here we define quasiconformal maps and recall
some basic facts.

Definition 2.3. Let (Y, dY) and (Z, dZ) be metric spaces with locally finite Hausdorff
2-measures. A homeomorphism ψ : (Y, dY)→ (Z, dZ) is quasiconformal if there exists
K ≥ 1 such that for all path families Γ in Y

(5) K−1 mod Γ ≤ mod ψΓ ≤ K mod Γ,

where ψΓ = {ψ ◦ γ : γ ∈ Γ}. If (5) holds with a constant K ≥ 1, we say that ψ is
K-quasiconformal.

A special case of [Wil12, Theorem 1.1] yields the following.

Theorem 2.4. Let Y and Z be locally compact separable metric spaces with locally finite
Hausdorff 2-measure and ψ : Y → Z a homeomorphism. The following are equivalent for
the same constant K > 0:

(i) mod Γ ≤ K mod ψΓ for all path families Γ in Y.
(ii) ψ ∈ N1,2

loc(Y, Z) and satisfies

ρ2
ψ(y) ≤ KJψ(y)

for H2
Y-almost every y ∈ Y.

The outer dilatation of ψ is the smallest constant KO ≥ 0 for which the modulus
inequality mod Γ ≤ KO mod ψΓ holds for all Γ in Y. The inner dilatation of ψ is the
smallest constant KI ≥ 0 for which mod ψΓ ≤ KI mod Γ holds for all Γ in Y. The
number K(ψ) = max {KI(ψ), KO(ψ)} is the maximal dilatation of ψ.

For a set G ⊂ Y and disjoint sets F1, F2 ⊂ G, let Γ(F1, F2; G) denote the family
of paths with each path starting at F1, ending at F2 and whose images are con-
tained in G. A quadrilateral is a set Q homeomorphic to [0, 1]2 with boundary
∂Q consisting of four boundary arcs, overlapping only at the end points, labelled
ξ1, ξ2, ξ3, ξ4 in cyclic order.

A metric surface is a separable metric space Y with locally finite Hausdorff 2-
measure that is homeomorphic to a (connected) 2-manifold without boundary.

Definition 2.5. A metric surface Y is reciprocal if there exists a constant κ ≥ 1 such
that

κ−1 ≤ mod Γ (ξ1, ξ3; Q)mod Γ (ξ2, ξ4; Q) ≤ κ(6)

for every quadrilateral Q ⊂ Y, and

(7) lim
r→0+

mod Γ
(

BY(y, r), Y \ BY(y, R); BY(y, R)
)
= 0

for all y ∈ Y and R > 0 such that Y \ BY(y, R) 6= ∅.

We note that for every metric surface,

(8) κ−1
0 ≤ mod Γ (ξ1, ξ3; Q)mod Γ (ξ2, ξ4; Q) ,

with κ0 = (4/π)2 [EP21] [RR19].
We recall [Raj17, Theorem 1.4] stating the following.

Theorem 2.6. Let (Y, dY) be a metric surface homeomorphic to R2 or to S2. Then there
exists a quasiconformal embedding ψ : (Y, dY)→ S2 if and only if Y is reciprocal.
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Similarly, Theorem 1.3 of [Iko21b] shows that if a metric surface (Y, dY) can be
covered by quasiconformal images of domains V ⊂ R2, then (Y, dY) is quasicon-
formally equivalent to a Riemannian surface. In particular, we have the following.

Theorem 2.7. Let (Y, dY) be a metric surface homeomorphic to S2. Then there exists
a quasiconformal homeomorphism ψ : (Y, dY) → S2 if and only if each point y ∈ Y is
contained in an open set U from which there exists a quasiconformal homeomorphism
φ : U → V ⊂ R2.

Since (8) holds, Corollary 12.3 of [Raj17] shows the following.

Proposition 2.8. Let Y be a metric surface, U ⊂ Y a domain, and ψ : U → Ω ⊂ R2 a
homeomorphism. If KO(ψ) < ∞, then ψ is K-quasiconformal for K = (2 · κ0) · KO(ψ).

3. Hemispheres

We construct a (pseudo)distance dZ on Z using a predistance D : Z× Z → [0, ∞]
defined in the following way, with the identification SZ ⊂ Z1 for the seam,

D(x, y) =





∞, if (x, y) ∈ Z1 × Z2 ∪ Z2 × Z1,

min {σ(x, y), σ(g(x), g(y))} , if x, y ∈ SZ,

σ(x, y), otherwise.

Then we denote dZ(x, y) = inf ∑n
i=1 D(xi, xi+1), the infimum taken over finite

chains (xi)
n+1
i=1 for which x1 = x and xn+1 = y. We obtain a metric space Z̃ and

a quotient map Q : Z → Z̃ by identifying (x, y) ∈ Z× Z whenever dZ(x, y) = 0,
and setting dZ̃(x, y) = dZ(Q−1(x), Q−1(y)) for each x, y ∈ Z̃.

In this section, we focus on analyzing the distance dZ on the seam SZ. The
main results of this section are Lemmas 3.2 and 3.3 and Proposition 3.6.

In the following two lemmas we abuse notation and identify ιi(Zi) with Zi
when convenient.

Lemma 3.1. The following hold:

(1) Let x, y ∈ S1 ⊂ Z1 and (xi)
n+1
i=1 a chain with x1 = x, xn+1 = y, and xi ∈ Z1

otherwise. Then ∑n
i=1 D(xi, xi+1) ≥ D(x, y).

(2) Let x, y ∈ S1 ⊂ Z1 and (xi)
n+1
i=1 a chain with g(x1) = g(x), g(xn+1) = g(y),

and xi ∈ Z2 otherwise. Then ∑n
i=1 D(xi, xi+1) ≥ D(x, y).

Proof. Given the chain from the claim (1), for every i, D(xi, xi+1) = σ(xi, xi+1).
Thus, ∑n

i=1 D(xi, xi+1) ≥ σ(x1, xn+1) ≥ D(x1, xn+1). The corresponding inequali-
ties hold for the chain from (2). �

Lemma 3.1 implies that when computing dZ(ι1(x), ι1(y)) for x, y ∈ S1, it is
sufficient to consider chains with intermediate points staying within the seam.

Lemma 3.2. If x, y ∈ Z1, then

(9) dZ(ι1(x), ι1(y)) =

{
σ(x, y), or there exist w, w′ ∈ S1 with

σ(x, w) + dZ(ι1(w), ι1(w′)) + σ(w′, y) ≤ σ(x, y).

The corresponding identity holds for points x, y ∈ Z2.
Furthermore, if x ∈ Z1 and y ∈ Z2, there exist w, w′ ∈ S1 such that

(10) dZ(ι1(x), ι2(y)) = σ(x, w) + dZ(ι1(w), ι1(w′)) + σ(g(w′), y).

Proof. We show (9). Suppose that there exists a sequence εj → 0+ and a sequence

of chains (xi,j)
nj+1
i=1 joining x to y with dZ(ι1(x), ι1(y)) ≥ −εj + ∑

nj
i=1 D(xi,j, xi+1,j)
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so that every chain has an element in S1. If i1 is the first index for which xi,j ∈ S1

and i2 the last one, then
nj

∑
i=1

D(xi,j, xi+1,j) ≥ σ(x, xi1,j) + dZ(ι1(xi1,j), ι1(xi2,j)) + σ(xi2,j, y)

≥ inf
{

σ(x, w) + dZ(ι1(w), ι1(w′)) + σ(w′, y)
}

,

the infimum taken over every w, w′ ∈ S1. Observe that the infimum is realized by
some w, w′ ∈ S1. Given such w, w′ ∈ S1, we pass to the limit j→ ∞ and conclude

dZ(ι1(x), ι1(y)) ≥ σ(x, w) + dZ(ι1(w), ι1(w′)) + σ(w′, y).

Since "≤" holds for every pair w, w′ ∈ S1, the lower equality in (9) follows.
If no such sequence of εj → 0+ exists, then there exists ε0 > 0 such that

for every ε0 > ε > 0, any chain joining x to y with dZ(ι1(x), ι2(y)) ≥ −ε +

∑n
i=1 D(xi, xi+1) does not intersect S1. Hence ∑n

i=1 D(xi, xi+1) ≥ σ(x, y). So, either
way, we obtain (9). The claims for each x, y ∈ Z2 and (x, y) ∈ Z1 × Z2 are proved
in a similar manner. �

For i = 1, 2, we denote ι̃i := Q ◦ ιi : Zi → Z̃. Lemma 3.2 implies that ι̃i is
1-Lipschitz everywhere and a local isometry in Zi. We also establish that ι̃i is
monotone, i.e, the preimage of a point is a compact and connected set.

Lemma 3.3. For i = 1, 2, the inclusion map ι̃i : Zi → Z̃ is 1-Lipschitz everywhere and
a local isometry on Zi. Moreover, for every z ∈ Z̃, the preimage ι̃−1

i (z) is compact and
connected. It contains two or more points only if ι̃−1

i (z) ⊂ S1.

Before proving Lemma 3.3, we show two auxiliary results.

Lemma 3.4. Let x, y ∈ S1 be distinct. Then there exists an arc γ : [0, 1]→ S1 joining x
to y with D(ι1(x), ι1(y)) = min {`(γ), `(g ◦ γ)}. The arc satisfies

D(ι1(x), ι1(y)) ≥ sup
{ti}n+1

i=1

n

∑
i=1

D(ι1(γ(ti)), ι1(γ(ti+1))),

the supremum taken over finite partitions of [0, 1]. In particular, D(ι1(x), ι1(y)) ≥
`(ι̃1(γ)).

Proof. The existence of γ with D(ι1(x), ι1(y)) = min {`(γ), `(g ◦ γ)} follows from
the fact that σ is geodesic on S1. We identify ι1(x) with x for every x ∈ S1 in the
following computations.

The claim about the partitions is a consequence of the following observation
and induction: If 0 ≤ a < s < b ≤ 1, then

(11) D(γ(a), γ(b)) ≥ D(γ(a), γ(s)) + D(γ(s), γ(b)).

We first assume that D(γ(a), γ(b)) = σ(γ(a), γ(b)). Then γ is a length-minimizing
geodesic joining γ(a) and γ(b). Consequently,

σ(γ(a), γ(b)) = σ(γ(a), γ(s)) + σ(γ(s), γ(b)).

Since σ(c, d) ≥ D(c, d) holds for every c, d ∈ S1, the inequality (11) holds in this
case. In the remaining case, g ◦ γ is a length-minimizing geodesic joining g(γ(a))
and g(γ(b)) and

σ(g(γ(a)), g(γ(b))) = σ(g(γ(a)), g(γ(s))) + σ(g(γ(s)), g(γ(b))).

Since σ(g(c), g(d)) ≥ D(c, d) for every c, d ∈ S1, the inequality (11) holds also in
this case.
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The partition claim implies D(x, y) ≥ ∑n
i=1 dZ̃(ι̃1(γ(ti)), ι̃1(γ(ti+1))) for every

partition {ti}n+1
i=1 of [0, 1]. The inequality D(x, y) ≥ `(ι̃1(γ)) follows by taking the

supremum over such partitions. �

Lemma 3.5. Let x, y ∈ S1 be distinct. Then there exists an arc γ : [0, 1]→ S1 joining x
to y such that dZ̃(ι̃1(x), ι̃1(y)) = `(ι̃1(γ)).

Proof. Let ε > 0. The defining property of dZ and Lemma 3.1 imply the existence
of a chain {xi}n+1

i=1 ⊂ S1 joining x to y for which

dZ(ι1(x), ι1(y)) ≥ −ε +
n

∑
i=1

D(ι1(xi), ι1(xi+1)).

For each i, Lemma 3.4 yields the existence of an arc θi : [0, 1] → S1 joining xi to
xi+1 with D(ι1(xi), ι1(xi+1)) ≥ `(ι̃1(θi)). Let θ denote the concatenation of these
paths. Then dZ(ι1(x), ι1(y)) ≥ −ε + `(ι̃1(θ)).

Let θ′ : [0, 1]→ S1 be an arc joining x to y within the image of θ. Applying (4)
on Z̃ with ρ ≡ χZ̃ implies that `(ι̃1(θ)) ≥ `(ι̃1(θ

′)). Such a θ′ is one of the arcs
joining x to y within S1.

Let εj → 0+ and consider θ′j as above for every such εj. Up to passing to
a subsequence and relabeling, we may assume that every such θ′j is the same
arc θ′. Passing to the limit j → ∞ establishes dZ(ι1(x), ι1(y)) ≥ `(ι̃1(θ

′)) ≥
dZ(ι1(x), ι1(y)). We set γ = θ′ to conclude the proof. �

Proof of Lemma 3.3. The claimed 1-Lipschitz and local isometry properties of ι̃1
follow from Lemma 3.2. The local isometry property implies that given z ∈ Z̃,
the preimage ι̃−1

1 (z) has more than two points only if the preimage is a subset of
S1.

Suppose the existence of a distinct pair x, y ∈ ι̃−1
1 (z). Then x, y ∈ S1. Lemma

3.5 shows that there exists an arc γ joining x to y within S1 satisfying

0 = dZ̃(ι̃1(x), ι̃1(y)) = `(ι̃1(γ)).

This implies |γ| ⊂ ι̃−1
1 (z). Since x and y were arbitrary, we conclude that ι̃−1

1 (z)
is path connected. Consequently, ι̃−1

1 (z) is a connected and compact subset of S1.
The properties of ι̃2 follow from a symmetry in the argument. Hence the claim

follows. �

Proposition 3.6. Let g : (S1,H1
S1) → (S1,H1

S1) be a homeomorphism with g∗H1
S1 =

vgH1
S1 + µ⊥ with H1

S1 and µ⊥ mutually singular. Then, for every Borel set B ⊂ S1,

(12) H1
dZ̃
(ι̃1(B)) =

∫

B
min

{
1, vg

}
dH1

S1 =
∫

ι̃1(B)
#(ι̃−1

1 (z)) dH1
Z̃(z).

Moreover, for every x, y ∈ S1, there exists an arc |γ| ⊂ S1 joining x to y for which

(13) dZ̃(ι̃1(x), ι̃1(y)) = `(ι̃1(γ)).

Before proving Proposition 3.6, we first consider a Carathéodory construction
on S1. First, fix a Borel set B0 ⊂ S1 for which H1

S1(B0) = 0 and µ⊥(S1 \ B0) = 0.
Set νABS(B) :=

∫
B min

{
1, vg

}
χS1\B0

dH1
S1 for all Borel sets B ⊂ S1.

For every arc γ : [0, 1] → S1, we denote ξABS(|γ|) := νABS(|γ|) and ξ(|γ|) :=
D(γ(0), γ(1)). The set function ξ ABS and the family of arcs |γ| ⊂ S1 yields
Carathéodory premeasures νABS

δ for each δ > 0.
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Lemma 3.7. For every Borel set B ⊂ S1, we have νABS(B) = supδ>0 νABS
δ (B) ≥

H1
Z̃
(ι̃1(B)).

Proof. The equality νABS(B) = supδ>0 νABS
δ (B) follows from the fact that νABS is

a finite Borel regular Borel measure.
We denote B1 =

{
vg ≥ 1

}
∪ B0 and B2 = S1 \ B1. If B ⊂ S1 is Borel, we have

H1
Z̃(ι̃1(B)) =

2

∑
i=1
H1

Z̃(ι̃1(B ∩ Bi)) ≤ H1
S1(B ∩ B1) +H1

S1(g(B) ∩ g(B2))

since ι̃i is 1-Lipschitz for i = 1, 2. The right-hand side equals νABS(B). Therefore
H1

Z̃
(ι̃1(B)) ≤ νABS(B) holds for all Borel sets. �

Lemma 3.8. Let x, y ∈ S1 be distinct and γ : [0, 1]→ S1 an arc joining x to y such that
dZ̃(ι̃1(x), ι̃1(y)) = `(ι̃1(γ)). Then H1

Z̃
(ι̃1(|γ|)) = dZ̃(ι̃1(x), ι̃1(y)) = νABS(|γ|).

Proof. Let π/2 > δ0 > 0 be such that

D(ι1(a), ι1(b)) < δ0 implies max {σ(a, b), σ(g(a), g(b))} < π/2.

Given such a pair a, b ∈ S1, the length-minimizing geodesic θ : [0, 1]→ S1 joining
a to b satisfies ξ(|θ|) = min {`(θ), `(g ◦ θ)}. Then ξ(|θ|) ≥ ξABS(|θ|).

Let γ be as in the claim. Let 0 < δ < δ0 and 0 < ε < δ/2. We consider a
partition {ti}n+1

i=1 of [0, 1] such that σ(γ(ti), γ(ti+1)) < δ/2 for every i. Then there
exists a chain

{
xi,j
}ni+1

j=1 ⊂ S1 joining the ends of γ|[ti ,ti+1]
so that

dZ(ι1 ◦ γ(ti), ι1 ◦ γ(ti+1)) ≥ −
ε

n
+

ni

∑
j=1

D(ι1(xi,j), ι1(xi,j+1)).

In particular, D(ι1(xi,j), ι1(xi,j+1)) < δ < δ0 for every j. Hence the length-
minimizing geodesic γi,j joining xi,j to xi,j+1 satisfies the assumptions of Lemma
3.4. For every i, Lemma 3.4 implies that, up to further partitioning the paths γi,j
and relabeling, we may assume σ(xi,j, xi,j) < δ for every j. Given this property,
we conclude D(ι1(xi,j), ι1(xi,j+1)) = ξ(|γi,j|) ≥ ξ ABS(|γi,j|) and

`(ι̃1(γ)) =
n

∑
i=1

dZ(ι1 ◦ γ(ti), ι1 ◦ γ(ti+1)) ≥ −ε + νABS
δ




n⋃

i=1

ni⋃

j=1

|γi,j|

 .

Since the concatenation θi of
{

γi,j
}ni

j=1 is a path joining γ(ti) to γ(ti+1), the con-

catenation θ of {θi}n
i=1 is a path joining x to y. Hence

⋃n
i=1

⋃ni
j=1 |γi,j| = |θ| con-

tains |γ| or S1 \ |γ|, and

`(ι̃1(γ)) ≥ −ε + min
{

νABS
δ (|γ|), νABS

δ (S1 \ |γ|)
}

.

After passing to ε→ 0+ and then to δ→ 0+, we conclude

H1
Z̃(ι̃1(γ)) = `(ι̃1(γ)) ≥ min

{
νABS(|γ|), νABS(S1 \ |γ|)

}
.

If we had νABS(|γ|) > νABS(S1 \ |γ|), this would contradict Lemma 3.7 and the
length-minimizing property of ι̃1(γ). Hence νABS(|γ|) ≤ νABS(S1 \ |γ|), and
H1

Z̃
(ι̃1(|γ|)) = dZ̃(ι̃1(x), ι̃1(y)) = νABS(|γ|) follows from Lemma 3.7. �

Proof of Proposition 3.6. The existence of γ and equality in (13) already follows
from Lemma 3.4.
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We claim that (12) holds. To this end, we consider three arcs γi : [0, 1] →
S1 overlapping only at their end points, whose images cover S1, with the arcs
satisfying νABS(|γi|) ≤ νABS(S1 \ |γi|).

Lemmas 3.7 and 3.8 imply that ι̃1 ◦ γi is a length-minimizing geodesic join-
ing its end points and νABS(|γi|) = H1

Z̃
(ι̃1(|γi|)). Lemma 3.7 implies that the

metric speed of ι̃1||γi | is bounded from above by min
{

1, vg
}

. Hence the equal-
ity νABS(|γi|) = H1

Z̃
(ι̃1(|γi|)) forces the metric speed of ι̃1 to equal min

{
1, vg

}

H1
S1 -almost everywhere on |γi| for i = 1, 2, 3. The equality (12) follows from the

area formula (4) and the fact that #(ι̃−1
1 (x)) = 1 H1

Z̃
-almost everywhere. The fact

#(ι̃−1
1 (x)) = 1 H1

Z̃
-almost everywhere follows from the monotonicity of ι̃1 and the

integrability of the multiplicity. The integrability of the multiplicity follows from
(3). �
Remark 3.9. We consider a 2π-periodic doubling measure µ on R with 2π = µ([0, 2π])
such that for some Borel set B ⊂ [0, 2π], L1(B) = 0 = µ([0, 2π] \ B), the existence of
which is established by Ahlfors–Beurling [BA56, Section 7]. Then ψ(x) =

∫ x
0 dµ is a

homeomorphism and there exists a quasisymmetry g : S1 → S1 with θ ◦ ψ = g ◦ θ, where
θ(t) = (cos(t), sin(t), 0). Then vg in (12) is identically zero. Consequently, dZ ≡ 0 on
the seam SZ.

4. Harmonic measure and welding homeomorphisms

We consider a welding homeomorphism g : S1 → S1 and a welding circle C
with complementary components Ω1 and Ω2, Riemann maps φi : Zi → Ωi for
i = 1, 2, and g = φ−1

2 ◦ φ1|S1 . In this section, we consider the harmonic measures
ωi(E) = φ∗i H1

S1(E)/(2π) for all Borel sets E ⊂ S2.
We define a homeomorphism π : S2 → (Z, dZ) and a quotient map π̃ : S2 → Z̃

via the formulas

(14) π(x) =

{
ι1 ◦ φ−1

1 (x), when x ∈ Ω1,

ι2 ◦ φ−1
2 (x), when x ∈ Ω2

and π̃ = Q ◦ π.

Recall that Q : Z → Z̃ is the quotient map identifying x, y ∈ Z whenever dZ(x, y) =
0. Lemma 3.3 implies that π̃ is monotone and π̃−1(x) contains two or more points
only if x is a point of the seam Q(SZ), and in such a case π̃−1(x) ⊂ C.

For α = 1, 2, we denote, for every Borel set B ⊂ S2,

(15) π̃∗Hα
Z̃(B) :=

∫

Z̃
#(B ∩ π̃−1(x)) dHα

Z̃(x) = Hα
Z̃(π̃(B)),

where the multiplicity can be ignored in the case α = 2 since it equals one outside
the negligible set Q(SZ). For α = 1, the multiplicity is two or more only when it is
∞ and this happens in a set of negligibleH1

Z̃
-measure. Either way, the multiplicity

is negligible in (15), so the second equality is justified.

Proposition 4.1. Let g be a welding homeomorphism with a welding circle C and I ⊂ C
a subarc. Then dZ̃(π̃(x), π̃(y)) = 0 for all x, y ∈ I if and only if ω1|I and ω2|I are
mutually singular. If such an interval exists, then Z̃ is not quasiconformally equivalent
to S2.

Remark 4.2. If g is a welding homeomorphism obtained from Remark 3.9 or any welding
g corresponding to the von Koch snowflake [GM05, Example 4.3], Proposition 4.1 im-
plies that Q(SZ) is a singleton. In particular, Z̃ is not even homeomorphic to the sphere.
For a given g, this happens if and only if g∗H1

S1 and H1
S1 are mutually singular.
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A key step in the proof of the conformal removability in Theorem 1.6 is the
following.

Proposition 4.3. Let g be a welding homeomorphism and π̃ as in (14). Then π̃ is
continuous, monotone, and surjective. Moreover, for all path families Γ on S2, mod Γ ≤
mod π̃Γ. The metric space Z̃ is quasiconformally equivalent to S2 if and only if π̃ is a
homeomorphism for which mod Γ = mod π̃Γ for all path families.

The proof of Proposition 4.3 requires some preparatory work. Given the
curve C, we say that x0 ∈ C is a tangent point if there exists a homeomorphism
γ : (−ε, ε) → C ′ ⊂ C with γ(0) = x0, and a tangent vector v0 ∈ Tx0S2 with unit
length such that for every smooth f : S2 → R, its differential d f satisfies

d f (v0) = lim
t→0+

f (γ(t))− f (x0)

σ(γ(t), x0)
and d f (−v0) = lim

t→0−

f (γ(t))− f (x0)

σ(γ(t), x0)
.

If v0 exists, the tangent vector v0 is independent of the parametrization γ and
C ′ up to multiplication by −1; see [GM05, Chapter II, Section 4]. The collection
of tangents points of C is denoted by Tn(C). The key properties of Tn(C) are
self-contained in the following statement.

Lemma 4.4. The Borel set Tn(C) has σ-finite Hausdorff 1-measure. Moreover, on the set
Tn(C), the measures ω1, ω2, and H1

C are mutually absolutely continuous.
Given any Borel set E ⊂ C with ω1(E) · ω2(E) > 0, the restrictions ω1|E and ω2|E

are mutually singular on E if and only if H1
C(Tn(C) ∩ E) = 0.

Proof. The Borel measurability of Tn(C) follows from [GM05, Chapter II, Theorem
4.2] which connects the tangents of C and the angular derivatives of any given
Riemann map φ′1 : Z1 → Ω1, where ∂Ω1 = C. The fact that Tn(C) has σ-finite
Hausdorff 1-measure follows from [GM05, Chapter VI, Theorem 4.2].

Theorem 6.3 of [GM05, Chapter VI] states that if a Borel set E ⊂ C is such that
ω1(E) · ω2(E) > 0, then ω1|E and ω2|E are mutually singular on E if and only if
H1
C(Tn(C) ∩ E) = 0.
The fact that on the set Tn(C) the measures ω1, ω2, and H1

C are mutually
absolutely continuous follows from [GM05, Chapter VI, Theorem 4.2 and the
following discussion on p. 211]. �

Lemma 4.5. The measures χC π̃∗H1
Z̃

, χTn(C)ω1, χTn(C)ω2 and χTn(C)H1
C are mutually

absolutely continuous.
More precisely, a given Borel set B ⊂ Tn(C) has positive 1-dimensional Hausdorff

measure if and only ifH1
Z̃
(π̃(B)) > 0. Furthermore, if B ⊂ C \Tn(C), thenH1

Z̃
(π̃(B)) =

0.

Proof. We write g∗H1
S1 = vgH1

S1 + 2π · µ⊥ withH1
S1 and µ⊥ are mutually singular.

We recall from Proposition 3.6 that for every Borel set B ⊂ C,

(16) H1
Z̃(π̃(B)) =

∫

φ−1
1 (B)

min
{

1, vg
}

dH1
S1 .

We denote h = vg ◦ φ−1
1 and observe the equality ω2 = hω1 + (φ1)∗µ⊥. Then (16)

is equivalent to

(17) (2π)−1H1
Z̃(π̃(B)) =

∫

B
min {1, h} dω1.

Lemma 4.4 implies that the measures χC\Tn(C)ω1 and χC\Tn(C)ω2 are mutually
singular. Consequently, h = 0 ω1-almost everywhere in C \ Tn(C). In particular,
if B = C \ Tn(C), the left-hand side equals zero in (17).
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Lemma 4.4 yields that the measures χTn(C)ω1, χTn(C)ω2 and χTn(C)H1
C are mu-

tually absolutely continuous. Hence ∞ > h > 0 ω1-almost everywhere in Tn(C).
This implies that the measure in (17) is mutually absolutely continuous with the
measures χTn(C)ω1, χTn(C)ω2 and χTn(C)H1

C . The claim follows from the equalities
(15) for α = 1. �

Proof of Proposition 4.1. Fix a subarc I ⊂ C. Proposition 3.6 implies that π̃(I) has
zero H1

Z̃
-measure if and only if for every x, y ∈ I, dZ̃(π̃(x), π̃(y)) = 0 if and

only if vg = 0 H1
S1 -almost everywhere on φ−1

1 (I). Equivalently, ω1|I and ω2|I are
mutually singular.

Lemma 3.3 shows that Z̃ 6= (Z, dZ) if and only if there exists a closed arc
I ⊂ S1 such that y = ι̃1(I). Assume that such an I exists. Having fixed x0 ∈ Z1
and 0 < s < σ(x0, S1), there exists c = c(x0, I, s) for which

mod Γ(I, BS2(x0, s); I ∪ Z1) ≥ c > 0;

a positive lower bound can be shown, for example, by estimating the modulus of
all geodesics joining I to BS2(x0, s) in I ∪ Z1.

When R > 0 is small enough, for every R > r > 0 and every path in
Γ(I, BS2(x0, s)); I ∪ Z1), we find a subpath γ′ : [0, 1] → Z1 so that ι̃1 ◦ γ joins
BZ̃(y, r) to Z̃ \ BZ̃(y, R) within BZ̃(y, R). Since ι̃1 is a local isometry off the seam,
this implies

lim inf
r→0+

mod Γ
(

BZ̃(y, r), Z̃ \ BZ̃(y, R); BZ̃(y, R)
)
≥ c.

Recalling Theorem 2.6, we see that Z̃ is not quasiconformally equivalent to S2. �

Lemma 4.6. For i = 1, 2, let ρi : Ωi → [0, ∞] denote the operator norm of the differential
of D(φ−1

i ). Then

(18) G = χΩ1 ρ1 + χΩ2 ρ2 + ∞ · χTn(C) ∈ L2(S2)

is a weak upper gradient of π̃.

Proof. The L2-integrability of G follows from the change of variables formulas of
the Riemann maps φ1 and φ2 and the fact that Tn(C) has negligible area. Hence,
as a consequence of Lemma 2.1, G is integrable along almost every absolutely
continuous path γ : [0, 1]→ S2. Given such a γ, we claim that

(19) dZ̃(π̃(γ(0)), π̃(γ(1))) ≤
∫

γ
G ds,

implying that G is a weak upper gradient of π̃.
Since G is integrable along γ, γ has negligible length in Tn(C). Then (4) implies

H1
S2(Tn(C)∩ |γ|) = 0. We concludeH1

Z̃
(π̃(C)∩ |π̃ ◦γ|) = 0 from Lemma 4.5. The

assumptions of Lemma 2.2 are satisfied and the conclusion `(π̃ ◦ γ) ≤
∫

γ G ds
follows. The inequality (19) is a consequence. �

We define the Jacobian of π̃ to be the density of π̃∗H2
Z̃

, defined in (15), with
respect to H2

S2 .

Lemma 4.7. The mapping π̃ satisfies Lusin’s Condition (N) and the Jacobian Jπ̃ coin-
cides with G2 H2

S2 -almost everywhere, with G being from (18).

Proof. The Lusin’s Condition (N) of π̃ follows from the fact that π̃(C) has negligi-
ble H2

Z̃
-measure, the fact that ιi : Zi → Z̃i is a local isometry, and as φ−1

i : Ωi → Zi
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satisfies Condition (N). Here Jπ̃ = 0 H2
S2 -almost everywhere on C, so the equality

Jπ̃ = G2 follows from the fact that φ1 and φ2 are Riemann maps. �

Proof of Proposition 4.3. The claimed topological properties of π̃ were already ver-
ified at the beginning of this section. Lemmas 4.6 and 4.7 prove that Jπ̃ = G2 ∈
L1(S2) with G being a weak upper gradient of π̃. This fact and the fact that
the multiplicity of π̃ is negligible for π̃∗H2

Z̃
imply mod Γ ≤ mod π̃Γ for all path

families Γ.
Lastly, we argue that a K-quasiconformal map ψ : Z̃ → S2 exists (for some

K ≥ 1) if and only if π̃ is a 1-quasiconformal homeomorphism. The "if"-direction
is obvious.

In the "only if"-direction, the fact that π̃ is a homeomorphism follows from
Proposition 4.1. So h = ψ ◦ π̃ : S2 → S2 is a homeomorphism satisfying mod Γ ≤
K mod hΓ for all path families Γ. Theorem 2.4 and [AIM09, Definition 3.1.1
and Theorem 3.7.7] prove that h is K-quasiconformal. Consequently, π̃ is K′-
quasiconformal for some K′ ≤ K2. This self-improves to K′ = 1 due to Lemma
4.8 below. This yields mod π̃Γ = mod Γ for all path families. �

Lemma 4.8. Suppose that π̃ : S2 → Z̃ from (14) is a homeomorphism. Then π̃ : S2 → Z̃
is 1-quasiconformal if and only if for every 1-Lipschitz h : S2 → R, h ◦ π̃−1 ∈ N1,2(Z̃).

Proof. The "only if"-claim is clear, given Theorem 2.4 (ii). In the "if"-direction, fix
a 1-Lipschitz h : S2 → R for now.

Consider the Borel function G : S2 → [0, ∞] defined on Lemma 4.6. Then
ρ = 1/G ◦ π̃−1 is such that ρ2 is the Jacobian of π̃−1, as a consequence of Lemma
4.7. Hence ρ ∈ L2(Z̃).

Given that h ◦ π̃−1 ∈ N1,2(Z̃) andH2
Z̃
(Q(SZ)) = 0, for almost every γ : [0, 1]→

Z̃, the composition (h ◦ π̃−1) ◦ γ is absolutely continuous, γ has negligible length
on the seam Q(SZ), and

∫
γ ρ ds < ∞. Indeed, the absolute continuity of (h ◦

π̃−1) ◦ γ for almost every path follows from [HKST15, Proposition 6.3.2]. The
fact that almost every path has negligible length on Q(SZ) follows from Lemma
2.1 and the L2-integrability of ∞ · χQ(SZ)

. Similarly, the conclusion
∫

γ ρ ds < ∞
follows from Lemma 2.1 and the L2-integrability of ρ.

If we denote E = (h ◦ π̃−1)(|γ| ∩Q(SZ)), the absolute continuity of (h ◦ π̃−1) ◦
γ implies H1

R(E) = 0. Then Lemma 2.2 yields `((h ◦ π̃−1) ◦ γ) ≤
∫

γ ρ ds. We
conclude that ρ is a weak upper gradient of h ◦ π̃−1.

Since ρ is independent of h and h is an arbitrary 1-Lipschitz function, Theorem
7.1.20 [HKST15] shows that ρ is a weak upper gradient of π̃−1. Since ρ2 is the
Jacobian of π̃−1, we conclude KO(π̃

−1) = 1. Recall KO(π̃) = 1 from Proposition
4.3. �

Remark 4.9. If the welding curve C happens to be rectifiable, the Hausdorff 1-measure
on C and χTn(C)H1

C are mutually absolutely continuous [GM05, Chapter VI, Theo-
rem 1.2 (F. and M. Riesz)]. With this fact at hand, Lemma 4.5 implies that π̃ is a
homeomorphism. Moreover, one can show that h ◦ π̃−1 ∈ N1,2(Z̃) for every 1-Lipschitz
h : S2 → R. Hence π̃ is 1-quasiconformal.

Proof of Theorem 1.6. Suppose the existence of a quasiconformal homeomorphism
ψ : Z̃ → S2. Up to postcomposing ψ by an orientation-reversing Möbius trans-
formation of S2, we may assume that φ̃i := ψ ◦ ι̃i|Zi : Zi → S2 is orientation-
preserving for i = 1, 2. Let C = ψ(Q(SZ)).
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The set S2 \ C is the disjoint union of Jordan domains Ω1 and Ω2, where Ωi is
the image of φ̃i for i = 1, 2.

Next, since ψ : Z̃ → S2 is a quasiconformal homeomorphism, ψ satisfies Lusin’s
Condition (N) [Raj17, Section 17]. Consequently, C has zero 2-dimensional Haus-
dorff measure.

We consider the Beltrami differential µ = χΩ1 µ1 + χΩ2 µ2, where µi is the Bel-
trami differential of φ̃−1

i . If h : S2 → S2 is a normalized solution to the Bel-
trami equation induced by µ [AIM09, Measurable Riemann mapping theorem],
the mapping ψ̃ = h ◦ ψ is 1-quasiconformal. Since C has zero measure, this is
readily verified by hand or by applying [Iko21b, Theorem 4.12].

We have verified that (Z, dZ) = Z̃ and we may assume that ψ : (Z, dZ) →
S2 is 1-quasiconformal with φi = ψ ◦ ι̃i|Zi being Riemann maps [AIM09, Weyl’s
lemma]. Proposition 4.1 implies (Z, dZ) = Z̃. The definition of Z implies that
g = φ−1

2 ◦ φ1|S1 . Consequently, g is a welding homeomorphism.
In order to show the removability of C := ψ(SZ), we are given an orientation-

preserving homeomorphism M : S2 → S2 conformal in the complement of C.
Then π′ := ψ−1 ◦ M−1 defines a mapping as in (14) for the curve C ′ = M(C).
Proposition 4.3 implies that π′ is 1-quasiconformal. Consequently, M−1 = ψ ◦ π′

is 1-quasiconformal, i.e., a Möbius transformation. �

5. Mass upper bound

In this section, we prove Theorems 1.1 and 1.2. We first consider the implica-
tion "(3) ⇒ (1)". Recall that we are given an orientation-preserving homeomor-
phism g : S1 → S1 and the canonical quotient map Q : Z → Z̃. We are assuming
the existence of a constant C > 0 for which

(20) lim inf
r→0+

H2
Z̃
(BZ̃(y, r))

πr2 ≤ C for every y ∈ Q(SZ).

In order to make transparent how the Lipschitz constant of g (resp. g−1) is
related to C in (20), we define C1, C2 ≥ 0 to be the smallest constants for which

lim inf
r→0+

H2
Z̃
(ι̃1(Z1) ∩ BZ̃(y, r))

πr2 ≤ C1 for every y ∈ Q(SZ)(21)

lim inf
r→0+

H2
Z̃
(ι̃2(Z2) ∩ BZ̃(y, r))

πr2 ≤ C2 for every y ∈ Q(SZ).(22)

Recalling from Lemma 3.3 the fact that the inclusion maps are 1-Lipschitz and
local isometries outside the seam, the limit infimums in (21) and (22) are bounded
from below by 1/2. Hence, C1, C2 ≥ 1/2. Since the seam is negligible, we have
1 ≤ C1 + C2 ≤ C.

We show that the constant C1 in (21) and the Lipschitz constant L1 of g−1 are
connected via the following function

(23) f (ε) :=

(
sin |(0,π/2]

)−1
(ε)

π
+

√
1− ε2

πε
for 0 < ε ≤ 1.

Definition 5.1. For every C ≥ 1/2, L = L(C) ≥ 1 denotes the unique positive number
such that for every 0 < ε ≤ L−1, f (ε) ≥ C. Equivalently, L = 1/ f−1(C).

Remark 5.2. We note that for every 0 < ε ≤ 1, we have f (ε) ≥ (πε)−1. We use this
fact during the proof of Theorem 1.1.
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Proposition 5.3. If (21) holds with constant C1 and L1 = L(C1) is as in Definition
5.1, then g−1 is L1-Lipschitz and ι̃1 : Z1 → Z̃ satisfies for every x, y ∈ Z1, σ(x, y) ≥
dZ(ι̃1(x), ι̃1(y)) ≥ σ(x, y)/L1.

The symmetry in the argument yields the following result.

Proposition 5.4. If (22) holds with constant C2 and L2 = L(C2) is as in Definition
5.1, then g is L2-Lipschitz and ι̃2 : Z2 → Z̃ satisfies for every x, y ∈ Z2, σ(x, y) ≥
dZ(ι̃2(x), ι̃2(y)) ≥ σ(x, y)/L2.

We start the proof of Proposition 5.3. We consider the decomposition g∗H1
S1 =

vgH1
S1 + µ⊥ with µ⊥ and H1

S1 being singular. We fix a Borel representative of vg.
Let f be as in (23). The following statement holds for every Z̃.

Proposition 5.5. Given 1 > ε > 0 and a H1
S1 -density point x0 ∈ S1 of E :=

{
vg ≤ ε

}
,

we have

(24) f (ε) ≤ lim inf
r→0+

H2
Z̃
(ι̃1(Z1) ∩ BZ̃(x0, r))

πr2 .

Proof. For the duration of the proof, we fix normal coordinates F : B(0, π/2)→ S2

centered at x0 in such a way that the preimage of S1∩B(x0, π/2) is (−π/2, π/2)×
{0} [Lee18, Section 5]. Recall that this means that F is an isometry along radial
geodesics and the metric has the expansion gij(x) = δij + O(‖x‖2

2) in these co-
ordinates. In particular, as r → 0+, the bi-Lipschitz constant of F|B(0,r) is of the
form 1 + O(r2). We denote Γ(s) := F(s, 0) for |s| ≤ π/2.

We fix 0 < η < 1/ε− 1. Since x0 is a density point of E, there exists s0 < π/2
such that for every 0 < s ≤ s0,

(25) H1
S1 (Γ ([−s, s]) \ E) ≤ εηs.

We fix 0 < r ≤ εs0. Then, for every 0 < s < r/ε, Proposition 3.6 yields, for both
I = [0, s] and I = [−s, 0],

(26) `(E ∩ (ι̃1 ◦ Γ|I)) ≤ εs.

Since ι̃1 is 1-Lipschitz, according to Lemma 3.3, (25) and (26) imply

(27) `(ι̃1 ◦ Γ|I) ≤ sε + εηs = ε(1 + η)s < s.

We denote for every |s| < r/((1 + η)ε), ρs := r − ε(1 + η)|s|. For each z ∈
Z1 ∩ BS2(F(s, 0), ρs), the inequality (27) implies ι̃1(z) ∈ BZ̃(ι̃1(x0), r).

We estimate Ar := H2
Z̃
(ι̃1(Z1) ∩ BZ̃(ι̃1(x0), r)) as r → 0+. In estimating Ar, we

use the fact that the seam Q(SZ) has negligible H2
Z̃

-measure and that ι̃1 is a local
isometry outside the seam. We claim that for each 0 < θ < π/2 the following
holds:

(28) Ar ≥ (1 + O((r/ε)2))−2
(

θr2 + cos(θ)
r2

(1 + O((r/ε)2))ε(1 + η)

)
.

The term (1 + O((r/ε)2))−2 comes from estimating the Jacobian of ι̃1 ◦ F. The
first term in the brackets comes from the fact that F preserves the speed of radial
geodesics, so

(ι̃1 ◦ F)
({

(s, t) :
√

s2 + t2 < r, 0 < t
})
⊂ ι̃1(Z1) ∩ BZ̃(ι̃1(x0), r).

We use this inclusion in a circular sector Cθ(r) which has a total angle 2θ and an
angle bisector {0} ×R.
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The second term in the brackets is twice the area of a suitable triangle. The
factor of two comes from the symmetry of the estimate (27) with respect to the
parameter s = 0. We consider a triangle Tθ(r) ⊂ R2 foliated by line segments
`(s), where 0 ≤ s < r/((1 + η)ε), with `(s) having the start point (s, 0), tangent
in the direction (sin(θ), cos(θ)), and has length ρa/(1 + O((r/ε)2)). The ι̃1 ◦ F
image of such a triangle Tθ(r) contributes to Ar. The inequality (28) follows.

We choose the angle θ to satisfy sin(θ) = ε(1 + η). We divide (28) by πr2, pass
to the limit r → 0+, and then to η → 0+, and conclude

(29) lim inf
r→0+

Ar

πr2 ≥

(
sin |(0,π/2]

)−1
(ε)

π
+

√
1− ε2

πε
= f (ε).

The inequality (24) is the same as (29). �

Remark 5.6. Given 0 < ε < 1, the lower bound in (29) is sharp. This can be shown by
considering a bi-Lipschitz g : S1 → S1 with metric speed vg ≡ ε everywhere in an open
neighbourhood of x0 ∈ S1.

If the circular sector Cθ(r) and triangle Tθ(r) are defined as in the proof of the lower

bound (29), with η = 0, and θ =
(

sin |(0,π/2]

)−1
(ε), we have

lim inf
r→0+

Ar

πr2 =
H2

R2(Cθ(1)) + 2H2
R2(Tθ(1))

π
= f (ε).

This can be showed using Lemma 3.2 and Proposition 3.6. The key property of the an-
gle θ is that the line on R2 containing (r/ε, 0) with tangent vector (− cos(θ), sin(θ))
intersects every ball BR2((s, 0), ρs) tangentially when 0 ≤ s < 1/ε and ρs = 1− εs.

Proof of Proposition 5.3. Given (21) and Proposition 5.5, we have vg(x) ≥ L−1
1 for

H1
S1 -almost every x ∈ S1. This implies that g−1 is absolutely continuous and

vg−1(x) ≤ L1 for H1
S1 -almost every x ∈ S1. Therefore g−1 is L1-Lipschitz.

The fact that ι̃1 1-Lipschitz follows from Lemma 3.3. Proposition 3.6 implies
that

dZ(ι̃1(x), ι̃1(y)) ≥ σ(x, y)/L1 for every x, y ∈ S1.

Given this inequality, the equality (9) in Lemma 3.2 implies the corresponding
inequality for every pair x, y ∈ Z1. Hence ι̃−1

1 is L1-Lipschitz. �

Next, we verify a lemma about radial extensions of bi-Lipschitz maps, which
we need during the proof of Theorem 1.1.

For the south pole P1 ∈ Z1, we consider the stereographic projection P : S2 \
{P1} → R2 × {0} fixing the equator and mapping the north pole P2 = (0, 0, 1)
to the origin. We identify R2 × {0} with R2. We note that P−1 has the explicit
definition

P−1(x, y) =
(

2x
1 + x2 + y2 ,

2y
1 + x2 + y2 ,

1− x2 + y2

1 + x2 + y2

)
.

The Riemannian tensor of S2 in these coordinates is I = (4/(1 + r2)2)gE, where r
is the distance to the origin and gE the Euclidean inner product. In polar coordi-
nates, gE = dr2 + r2dθ2. We see from the form of I that the bi-Lipschitz constant
of g̃ = P ◦ g ◦ (P|S1)−1 and g : S1 → S1 coincide.

We represent the polar coordinates using the complex notation reiθ . We note
that there exists a homeomorphism G̃ : R → R with g̃(eiθ) = eiG̃(θ) for every
θ ∈ R. For every 0 ≤ r ≤ 1 and θ ∈ R, we set ψ̃(reiθ) := reiG̃(θ) and refer to ψ̃ as
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the radial extension of g̃. We recall from [Kal14, Theorem 2.2] that the bi-Lipschitz
constants of g̃ and ψ̃ coincide. Let ψ = P−1 ◦ ψ̃ ◦ P|Z2 : Z2 → Z2.

We use the following fact during the proof of Lemma 5.8; see for example
[DCJS16], [CS20].

Lemma 5.7. For every x, y ∈ S2, 0 < ε < 1, and 0 < 4r < σ(x, y), the modulus of the
family of paths joining BS2(x, r) to BS2(y, r) with length (1 + ε)σ(x, y) is positive.

Lemma 5.8. The map ψ : Z2 → Z2 is L-bi-Lipschitz if g is L-bi-Lipschitz.

Proof. We refer the interested reader to [Kal14, Section 2] for the proof of the fact
that ψ̃ is bi-Lipschitz if g̃ (equivalently g) is bi-Lipschitz. We take this as a given.

Since ψ̃ is bi-Lipschitz, it has a differential at L2-almost every point in D. Given
this fact, the following computations are understood to hold at L2-almost every
(x, y) = reiθ in the unit disk.

The pullback ψ̃∗ I is a diagonal matrix with respect to the basis (dr, dθ), with
diagonal 4/(1 + r2)2 and 4|G̃′(θ)|2r2/(1 + r2)2. Hence the maximum of the op-
erator norms of Dψ̃ : (TD, I) → (TD, I) and its inverse is equal to L(reiθ) =

max
{
|G̃′(θ)|, |G̃′(θ)|−1

}
. Then, if L′ denotes the essential supremum of L(reiθ),

Lemma 5.7 implies that ψ is L′-bi-Lipschitz. On the other hand, L′ is the bi-
Lipschitz constant of g. �

Proof of Theorem 1.1. We first claim that "(1) ⇒ (2)". Lemma 5.8 provides us with
an L-bi-Lipschitz ψ : Z2 → Z2 extension of the given L-bi-Lipschitz g. We define
H(x) = ι̃1(x) for each x ∈ Z1 and H(x) = ι̃2 ◦ ψ(x) otherwise. Proposition 3.6
implies that H is L-bi-Lipschitz at the seam, and Lemma 3.2 implies that H is
L-bi-Lipschitz everywhere.

Notice that if H : S2 → Z̃ is L′-bi-Lipschitz, we may choose C = (L′)4 as an
upper bound for the 2-dimensional Hausdorff lower density. Hence "(2) ⇒ (3)"
follows, quantitatively. Lastly, "(3) ⇒ (1)" follows from Propositions 5.3 and 5.4.
In fact, given C ≥ 1 for which the lower density bound (20) holds, g is L′-bi-
Lipschitz for L′ solving C = f (1/L′). Since f (ε) ≥ 1/πε for every 0 < ε ≤ 1, we
have Cπ ≥ L′. Hence g is Cπ-bi-Lipschitz. �

Remark 5.9. The estimates between the constants in "(3) ⇒ (1)" in Theorem 1.1
can be improved in two ways. First, the constants C1 and C2 in (21) and (22) satisfy
max {C1, C2} ≤ C− 1/2, so g is (C− 1/2)π-bi-Lipschitz.

The second improvement is obtained by using the constant L′ = L(C − 1/2) from
Definition 5.1. Then g is L′-bi-Lipschitz, where L′ ≤ (C− 1/2)π.

These improvements imply that the bi-Lipschitz constant of g converges to 1 as C →
1+. These facts also improve Theorem 1.2 and the following result, Proposition 5.10.

Before proving Theorem 1.2, we investigate a related problem. To this end,
suppose that we are given Riemann maps φi : Zi → Ωi with Ω1 and Ω2 denoting
the complementary components of a welding curve C, and set g = φ−1

2 ◦ φ1|S1 .

Proposition 5.10. Let K, C ≥ 1. The welding homeomorphism g is π(KC)2-bi-Lipschitz
if there exists a K-quasiconformal homeomorphism h : S2 → S2 such that for both i = 1, 2,

(30) C−1 Jh(x) ≤ J
φ−1

i
(x) ≤ CJh(x) for H2

S2 -a.e. x ∈ Ωi.

Conversely, if g is L-bi-Lipschitz, then there exists L4-quasiconformal homeomorphism
h : S2 → S2 such that (30) holds for C = L2.
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Proof. We first assume that g : S1 → S1 is L-bi-Lipschitz. Then Theorem 1.1 pro-
vides us with an L-bi-Lipschitz homeomorphism Ψ : Z̃ → S2. Proposition 4.3 and
(14) imply that π̃ : S2 → Z̃ defined via the formula

(31) π̃(x) =

{
ι̃1 ◦ φ−1

1 (x), x ∈ Ω1,

ι̃2 ◦ φ−1
2 (x), x ∈ Ω2

is a 1-quasiconformal homeomorphism. Therefore, h := Ψ ◦ π̃ : S2 → S2 is K-
quasiconformal for K = L4, and as Ψ is L-bi-Lipschitz, the Jacobians of h and π̃

are comparable with comparison constant C = L2.
Next, we are given a Jordan curve C ⊂ S2 corresponding to a welding homeo-

morphism g = φ−1
2 ◦ φ1|S1 , a K-quasiconformal homeomorphism h : S2 → S2, and

a constant C ≥ 1 such that

(32) C−1 Jh(x) ≤ Jπ̃(x) ≤ CJh(x) H2
S2 -a.e. x ∈ S2 \ C.

For i = 1, 2, the composition h ◦ φi is K-quasiconformal with Jacobian bounded
from above C and below by C−1, respectively; here we apply (32). Theorem 2.4 (ii)
and Hadamard’s inequality imply that C−1 ≤ ρ2

h◦φi
≤ KC H2

S2 -almost everywhere
in Zi. Lemma 5.7 implies that the homeomorphism h ◦ φi is locally L′-bi-Lipschitz
for L′ =

√
KC.

Since, for both i = 1, 2, Zi is geodesic, it is immediate that h ◦ φi : Zi → S2 is
L′-Lipschitz. Since this holds for both i = 1, 2, the construction of dZ implies that
whenever x, y ∈ S1, σ(h ◦ φ1(x), h ◦ φ1(y)) ≤ L′dZ̃(ι̃1(x), ι̃1(y)). Lemma 3.2 (9)
establishes the same inequality for each x, y ∈ Z1. Hence the mapping π̃ defined
by the expression (31) is a homeomorphism and Ψ := h ◦ π̃−1 is L′-Lipschitz on
the southern hemisphere. A similar argument shows that Ψ is L′-Lipschitz on
both of the hemispheres. Then Lemma 3.2 (10) implies that Ψ is L′-Lipschitz
everywhere.

Since mod Γ ≤ K mod Ψ−1Γ for all path families (recall Proposition 4.3), we
have Ψ−1 ∈ N1,2(S2, Z̃). On the other hand, Ψ(Q(SZ)) has negligible H2

S2 -
measure and Ψ−1 is locally L′-Lipschitz in the complement of that set. In par-
ticular, almost every absolutely continuous γ : [0, 1] → S2 has zero length in
Ψ(Q(SZ)) and Ψ−1 ◦ γ is absolutely continuous. As a consequence, H1

Z̃
(Q(SZ) ∩

|Ψ−1 ◦ γ|) = 0.
Denoting E = Q(SZ) ∩ |Ψ−1 ◦ γ| and ρ = L′χS2 , we conclude from Lemma 2.2

that `(Ψ−1 ◦ γ) ≤
∫

γ ρ ds ≤ L′`(γ). Lemma 5.7 implies that Ψ−1 is L′-Lipschitz.
We have verified that Ψ is L′-bi-Lipschitz. By applying the implications "(2)⇒

(3) ⇒ (1)" in Theorem 1.1, we conclude that g is L-bi-Lipschitz for L = π(L′)4 =
π(KC)2. �

Next, we prove Theorem 1.2. This essentially follows from Proposition 5.10.

Proof of Theorem 1.2. We claim that g : S1 → S1 is bi-Lipschitz if and only if there
exists a quasiconformal homeomorphism h : S2 → S2 and a 1-quasiconformal
homeomorphism ϕ : S2 → Z̃ such that Jϕ and Jh are comparable.

If such ϕ and h exist, we may assume that φi = ϕ−1 ◦ ι̃i|Zi is a Riemann map
for both i = 1, 2. Then Proposition 5.10 shows that g is bi-Lipschitz.

Conversely, if g is bi-Lipschitz, Theorem 1.1 provides a bi-Lipschitz homeomor-
phism Ψ : Z̃ → S2. Then Theorem 1.6 implies the existence of a 1-quasiconformal
homeomorphism π : S2 → Z̃ such that φi = π−1 ◦ ι̃i|Zi is a Riemann map for
i = 1, 2. We may also assume that Ψ ◦ ι̃i|Zi is orientation-preserving for i = 1, 2,
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by post-composing Ψ with a suitable reflection, if need be. Defining h = Ψ ◦ π
implies that the assumptions of Proposition 5.10 hold for g.

Since Theorem 1.1 and Proposition 5.10 are quantitative, so is Theorem 1.2. �

6. Mappings of finite distortion

In this section, we establish Proposition 1.4 and Theorem 1.5.

Definition 6.1. Let Ω, Ω′ ⊂ S2 be open. A homeomorphism ψ : Ω→ Ω′ is a mapping
of finite distortion if ψ ∈ N1,1(Ω, S2); second, the determinant J(Dψ) of the differential
Dψ is nonnegative and integrable; lastly, there exists a function 1 ≤ K′ψ < ∞ for which

(33) |Dψ|2g ≤ K′ψ J(Dψ) H2
S2 -a.e. in Ω.

Here |Dψ|g refers to the operator norm of the differential Dψ. We let Kψ denote a smallest
Borel function which is bounded from below by χΩ and for which (33) holds.

Definition 6.2. A smooth strictly increasing function A : [1, ∞) → [0, ∞) is admissi-
ble if

(1) A(1) = 0,
(2)

∫ ∞
1 t−2A(t) dL1(t) = ∞, and

(3) t 7→ tA′(t) is increasing for large values t, and converges to ∞ as t→ ∞.

We obtain the same class of admissible A if we replace (2) with the condition
∫ ∞

1
t−1A′(t) dL1(t) = ∞.

This follows from the fact that A(s)/s ≤ 4
∫ 2s

s t−2A(t) dL1(t) whenever s ≥ 1
and the integration by parts formula.

Definition 6.3. Let Ω, Ω′ ⊂ S2 be open, and ψ : Ω → Ω′ a homeomorphism. We say
that ψ is admissible if ψ is a mapping of finite distortion and there exists an admissible
A with

(34)
∫

Ω
eA(Kψ) dH2

S2 < ∞.

If A(t) = pt− p for some p > 0, we say that ψ has exponentially integrable distor-
tion.

We recall some properties of such ψ. First, ψ satisfies Lusin’s Condition (N)
[KKM+03, Theorem 1.1]. Second, ψ−1 ∈ N1,2(Ω′, Ω) [KO06, Corollary 1.2]; this
implies that ψ−1 satisfies Lusin’s Condition (N) [AIM09, Theorem 3.3.7]. Third,
the Jacobian J(Dψ) appearing on the right-hand side of (33) coincides with the
Jacobian Jψ we defined in Section 2.2 [KKM+03].

In this section, we show the following theorem.

Theorem 6.4. Suppose that g : S1 → S1 is a homeomorphism, g−1 absolutely continu-
ous, and there exists a homeomorphism ψ : Z2 → Z2 extending g with ψ|Z2 admissible.
Then Z̃ is quasiconformally equivalent to S2.

Note that Theorem 1.5 is a consequence of Theorem 6.4 so it suffices to verify
Theorem 6.4.

Definition 6.5. Given x0 ∈ S1 and π > R0 > 0, set Q̃ := BS2(x0, R0) ⊂ S2. We define
H(x) = ι̃1(x) if x ∈ Q̃ ∩ Z1 and ι̃2 ◦ ψ(x) if x ∈ Q̃ ∩ Z2, and denote R̃ = H(Q̃) ⊂ Z̃.

Proposition 6.6. If R̃ and H are as in Definition 6.5, then H is a homeomorphism and
there exists a 1-quasiconformal homeomorphism f = (u, v) : R̃ → [0, 1] × [0, M] for
some M > 0.
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Proof of Theorem 6.4 assuming Proposition 6.6. We cover the seam in Z̃ by the interi-
ors of R̃ as in Definition 6.5. This implies that Z̃ can be covered by quasiconformal
images of planar domains, and the quasiconformal equivalence of Z̃ and S2 fol-
lows from Theorem 2.7. �

The following lemma is a key step in proving Proposition 6.6.

Lemma 6.7. The H from Definition 6.5 is a homeomorphism, H ∈ N1,1(Q̃, R̃) and
H−1 ∈ N1,2(R̃, Q̃). Furthermore, H satisfies Lusin’s Conditions (N) and (N−1).

Proof. The absolute continuity of g−1 implies for the Lebesgue decomposition
g∗H1 = vgH1 + µ⊥ that

{
vg = 0

}
has negligible H1

S1 -measure in an open neigh-
bourhood of S1 ∩ Q̃. Then Proposition 3.6 and Lemma 3.2 imply that H is a
homeomorphism.

We recall from Lemma 3.3 the fact that the inclusion maps ι̃1|Z1 : Z1 → Z̃
and ι̃2|Z2 : Z2 → Z̃ are 1-Lipschitz local isometries. This implies that H and its
inverse are absolutely continuous in measure; the seam has negligible Hausdorff
2-measure.

In the following proof, we write ρ̃i for functions defined on Q̃ ∩ Zi ⊂ S2 and
ρi = (ρ̃i ◦ ι̃−1

i ) on R̃ ∩ ι̃i(Zi) ⊂ Z̃ for i = 1, 2.
Since ψ−1 ∈ N1,2(Q̃ ∩ Z2, S2), for i = 1, 2, there exists an upper gradient ρ̃i ∈

L2(Q̃ ∩ Zi) of H−1 ◦ ι̃i|Zi∩Q̃ for i = 1, 2. We fix such functions and denote ρ :=

χR̃∩ι̃1(Z1)
ρ1 + χR̃∩ι2(Z2)

ρ2 ∈ L2(R̃).

Let Γ0 denote the collection of non-constant paths on R̃ ⊂ Z̃ which have pos-
itive length in the seam Q(SZ) or along which ρ fails to be integrable. Since
ρ + ∞ · χQ(SZ)

is L2-integrable, Lemma 2.1 yields mod Γ0 = 0.
Consider next an absolutely continuous path γ : [0, 1]→ R̃ in the complement

of Γ0. Then θ = H−1 ◦ γ is such that H1
S2(|θ| ∩ S1) = 0. Indeed, since γ has

zero length in the seam, the area formula (4) implies H1
Z̃
(|γ| ∩ Q(SZ)) = 0. This

implies H1
S1(|θ| ∩ S1) = 0 due to Proposition 3.6 and the absolute continuity of

g|−1
S1∩Q̃

. Since H1
S1(|θ| ∩ S1) = 0, the assumptions of Lemma 2.2 are satisfied.

Hence

`(θ) ≤
∫

γ
ρ ds < ∞.

This implies that H−1 has an L2-integrable weak gradient, so H−1 ∈ N1,2(R̃, Q̃).
Lastly, we claim that H ∈ N1,1(Q̃, R̃). To this end, we observe that H|Q̃∩Zi

has

an upper gradient ρ̃i ∈ L1(Q̃ ∩ Zi), and denote ρ̃ = ∑2
i=1 χQ̃∩Zi

ρ̃i ∈ L1(Q̃). Now

ρ̃ is integrable along 1-almost every absolutely continuous path γ : [0, 1] → Q̃
and 1-almost every such path has zero length in S1. Having fixed a path γ with
these properties, Proposition 3.6 implies that θ = H ◦ γ has zero length in the
seam. The inequality `(θ) ≤

∫
γ ρ ds follows from Lemma 2.2. This yields that

H ∈ N1,1(Q̃, R̃). �

Remark 6.8. The Sobolev regularity H−1 ∈ N1,2(Q̃, R̃) is crucial in the following.
Typically, the Sobolev regularity of the inverse of a Sobolev homeomorphism is a subtle
issue in the metric surface setting.

To highlight the issue, we recall [IRar, Example 6.1]. There an example of a metric
surface X was constructed for which there exists a 1-Lipschitz homeomorphism H : R2 →
X with mod Γ ≤ mod HΓ for all path families, but H−1 6∈ N1,2(X, R2). In fact, H is a
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local isometry outside a Cantor set E ⊂ R× {0} of positive L1-measure and H(E) has
negligible H1

X-measure. The key point is that X is not reciprocal; recall Definition 2.5.

We define the following auxiliary function for later use:

P(t) :=





t2, 0 ≤ t < 1,

t2

A−1(log t2)
, t ≥ 1.

We note that for every a ∈ [0, ∞),

(35) P(a) ≤ eA(KH) +
a2

KH
for H2

S2 -a.e. in Q̃.

This follows by first observing that a2 < eA(KH) implies P(a) ≤ eA(KH) and other-
wise P(a) ≤ a2

KH
.

Also, for any measurable function ρ̃ : Q̃→ [0, ∞],

(36)
∫

Q̃
P(ρ̃) dH2

S2 < ∞ implies
∫

Q̃
ρ̃ dH2

S2 < ∞.

The implication (36) follows since A′(t)t is increasing for large t and converges
to infinity as t → ∞. Consequently, there exists t1 ≥ 1 for which the derivative
of h(t) = eA(t)/t2 is bounded from below by h(t)/t for every t ≥ t1. This implies
the existence of t0 ≥ 1 such that h(t) ≥ 1 for every t ≥ t0. This is equivalent to
saying that P(t) ≥ t for every t ≥ t0. This yields (36).

We set Kψ(x) = |Dψ|2g /J(D(ψ))(x) and Kψ−1(x) =
∣∣D(ψ−1)

∣∣2
g /J(D(ψ−1)).

Observe that Kψ = Kψ−1 ◦ ψ H2
S2 -almost everywhere.

We set KH(x) = 1 if x ∈ Q̃ ∩ Z1 and KH(x) = Kψ(x) in x ∈ Q̃ ∩ Z2. Then

(37)
∫

Q̃
eA(KH) dH2

S2 < ∞.

Also, KH−1 := ρ2
H−1 /JH−1 satisfies KH = KH−1 ◦ H H2

Z̃
-almost everywhere, since,

outside a H2
Z̃

-negligible set, either the number is one, or ρ2
H−1 ◦ ι̃2 =

∣∣D(ψ−1)
∣∣2
g,

JH−1 ◦ ι̃2 = J(D(ψ−1)), and Kψ = Kψ−1 ◦ ψ.

For every z ∈ Q̃ and every pair 0 < r < r0, we denote Γ(z, r, r0) := Γ(BS2(z, r), Q̃ \
BS2(z, r0); Q̃).

Lemma 6.9. For every z ∈ Q̃ and 0 < r < r0 with Q̃ \ BS2(z, r0) 6= ∅,

(38) mod HΓ(z, r, r0) ≤ inf
{∫

Q̃
ρ̃2KH dH2

S2 : ρ̃ is admissible for Γ(z, r, r0)

}
.

Proof. Fix an admissible function ρ̃ for Γ(z, r, r0). Then for almost every γ ∈
HΓ(z, r, r0), H−1 ◦ γ is absolutely continuous, and

1 ≤
∫

H−1◦γ
ρ̃ ds ≤

∫

γ
(ρ̃ ◦ H−1)ρH−1 ds.

In particular, ρ = (ρ̃ ◦ H−1)ρH−1 is weakly admissible for HΓ(z, r, r0). Conse-
quently,

mod HΓ(z, r, r0) ≤
∫

R̃
ρ2 dH2

Z̃.

The change of variables formula for H and the fact that the seam Q(SZ) is H2
Z̃

-
negligible establish the claim, after taking the infimum over such ρ̃. �
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Having observed Lemma 6.9 and (37), the capacitary estimate [KO06, Theorem
5.3] implies that keeping r0 fixed in (38), we obtain mod HΓ(z, r, r0) → 0 as r →
0+. A key point is that A in (37) is admissible. Since H is a homeomorphism, this
implies that (7) holds for every y ∈ int(R̃) ⊂ Z̃. By repeating the argument with
a slightly larger Q̃, we conclude the following.

Lemma 6.10. The identity (7) holds for every y ∈ R̃ ⊂ Z̃.

Fix a decomposition ξ̃1, ξ̃2, ξ̃3, ξ̃4 of ∂Q̃ of four arcs overlapping only at their
end points, labelled in cyclic order consistently with the orientation of S2. For
each i, we denote ξi = H(ξ̃i).

Given the validity of (7) for each y ∈ R̃ and the universal lower bound (8),
[Raj17, Proposition 9.1] yields the existence of a homeomorphism f = (u, v) : R̃→
[0, 1]× [0, M] with the following properties:

• u ∈ N1,2(R̃) with 2E(u) =: M [Raj17, Section 4];
• u−1(0) = ξ1, u−1(1) = ξ3, v−1(0) = ξ2, and v−1(M) = ξ4 [Raj17, Theorem

5.1 and Proposition 7.3];
• The minimal weak upper gradient ρu is weakly admissible for the path

family Γ(ξ1, ξ3; R̃) and is a minimizer, i.e., M = mod Γ(ξ1, ξ3; R̃) [Raj17,
Section 4-5];
• For every Borel set E ⊂ R̃, L2( f (E)) =

∫
E ρ2

u dH2
Z̃

. In particular, the
Jacobian of f coincides with ρ2

u [Raj17, Proposition 8.2].

The third point implies that if u′ ∈ N1,2(R̃) has the same boundary values as u
in ξ1 ∪ ξ3, the Dirichlet energies satisfy E(u) ≤ E(u′). Given this, we say that u is
an energy minimizer for Γ(ξ1, ξ3; R̃).

During the proof of Proposition 6.11, the Beltrami differential of H is defined
to be zero in int(Q̃) ∩ Z1, and coincide with the one of ψ in int(Q̃) ∩ Z2.

Proposition 6.11. The map f = (u, v) : R̃ → [0, 1] × [0, M] is a 1-quasiconformal
homeomorphism.

The proof of Proposition 6.11 is split into several lemmas.

Lemma 6.12. Let 0 < a < b < 1 and 0 < c < d < M for which

Q0 =
{

x ∈ R̃ : f (x) ∈ [a, b]× [c, d]
}
⊂ int(R̃) \Q(SZ).

Then f |int(Q0) is a 1-quasiconformal homeomorphism.

Proof. For the duration of the proof, we denote

ξ0
1 = f−1({a} × [c, d]), ξ0

2 = f−1([0, 1]× {c}),
ξ0

3 = f−1({b} × [c, d]), ξ0
4 = f−1([0, 1]× {d}).

There exists a Jordan domain V ⊂ int(Q)∩ Zi, for some i = 1, 2, such that ι̃i(V) =
Q0. Equation (57) [Raj17, Lemma 10.2] states that

mod Γ(ξ0
1, ξ0

3; Q0) =
d− c
b− a

.

Since ι̃i is 1-Lipschitz and a local isometry in V, we have for every quadrilateral
Q′ ⊂ Q0,

(39) mod Γ(ξ ′1, ξ ′3; Q′)mod Γ(ξ ′2, ξ ′4; Q′) = 1.

In particular, we have

(40) mod Γ(ξ0
1, ξ0

3; Q0)mod Γ(ξ0
2, ξ0

4; Q0) = 1.
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We wish to apply [Raj17, Proposition 11.1]. There Rajala assumes that (6) holds
for some κ ≥ 1 and concludes that 2000 · √κρu is a weak upper gradient of f . We
do not assume this. However, a quick inspection of the proof shows that given
any open set Ω ⊂ int(Q0), the property (39) implies that 2000 · χint(Q0) · ρu is a
weak upper gradient of f |int(Q0) in Ω. By exhausting int(Q0) by such open sets,
we conclude that f |int(Q0) ∈ N1,2(int(Q0); R2).

Since u ∈ N1,2(R̃) is a continuous energy minimizer, the composition u ◦ ιi|V is
harmonic [AIM09, Weyl’s lemma]. The Riemann mapping theorem, the Sobolev
regularity of f |int(Q0), the boundary values of the components of f |Q0 , and (40)
imply that f ◦ ιi|V is a Riemann map. In particular, f |int(Q0) is a 1-quasiconformal
homeomorphism. �

Lemma 6.13. The composition f̃ = f ◦ H : Q̃ → [0, 1] × [0, M] is an element of
N1,1(int(Q̃), R2). Moreover, the Beltrami differential of f̃ coincides with the one of
H and (37) holds for K f̃ in place of KH .

Proof. Given Lemma 6.12, the Beltrami differential of f̃ and H coincide H2
S2 -

almost everywhere in int(Q̃) \ S1, i.e., H2
S2 -almost everywhere in int(Q̃). The

result also implies that the pointwise distortions of f̃ and H coincide H2
S2 -almost

everywhere in int(Q̃).
Next, we show that ũ = u ◦ H ∈ N1,1(Q̃). We recall that H ∈ N1,1(Q̃, R̃).

Moreover, if ρ0 ∈ L2(R̃) is an upper gradient of u, the function ρ = (ρ0 ◦ H)ρH is
a 1-weak upper gradient of ũ with

∫

Q̃
P(ρ) dH2

Z ≤
∫

Q̃
eA(KH) dH2

Z + ‖ρ0‖2
L2(Q) < ∞,

where we apply (35) and the distortion inequality ρ2
H ≤ KH JH . The L1(Q̃)-

integrability of ρ follows from (36), so ũ ∈ N1,1(Q̃).
Let ṽ = v ◦H. Lemma 6.12 implies that ρ = (ρ0 ◦H)ρH ∈ L1(Q̃) is a 1-weak up-

per gradient of ṽ in every open U ⊂ int(Q̃) \ S1. Therefore, ṽ ∈ N1,1(int(Q̃) \ S1).
Given the continuity of ṽ, we actually have ṽ ∈ N1,1(int(Q̃)). This is seen by
verifying the ACL (absolute continuity on lines) property for ṽ|int(Q̃) on charts

covering S1 ∩ int(Q̃). The ACL property on charts follows from a minor modifi-
cation of the proof in [Väi71, Theorem 35.1] showing that closed sets with σ-finite
Hausdorff 1-measure are quasiconformally removable. This implies that ρ is a
1-weak upper gradient of ṽ on int(Q̃). The claim follows from this. �

Lemma 6.14. Let u′ denote the energy minimizer for Γ(ξ2, ξ4; Q). Then v = Mu′.

Proof. Similarly to f and f̃ , let f ′ = (u′, v′) and f̃ ′ denote the homeomorphisms
obtained from the energy minimizer u′ for Γ(ξ2, ξ4; R̃). Let R′ denote the image
of f ′ and R the image of f .

Lemma 6.13 shows that the Beltrami differentials of f̃ and f̃ ′ coincide with one
another H2

S2 -almost everywhere and their distortion satisfies (37) for an admissi-
ble A. Then the Stoilow factorization theorem [AIM09, Theorems 20.5.1, 20.5.2]
implies that ϕ = f̃ ′ ◦ f̃−1 is conformal; note also that ϕ = f ′ ◦ f−1.

Since ϕ is conformal, the energy minimizer π1 for Γ( f ′(ξ2), f ′(ξ4); R′) is such
that π1 ◦ ϕ is the energy minimizer for Γ( f (ξ2), f (ξ4); R). On the other hand,
here π1 is the projection to the x-axis and π1 ◦ ϕ is M−1 times the projection to
the y-axis. Since ϕ = f ′ ◦ f−1, the equality u′ = π1 ◦ ϕ ◦ f = M−1v follows. �
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Proof of Proposition 6.11. Lemma 6.14 implies that f = (u, v) ∈ N1,2(R̃, R2). Fur-
thermore, Lemma 6.12 implies ρ2

f = J f ∈ L1(R̃). Hence mod Γ ≤ mod f Γ for

every path family in R̃. This improves to K-quasiconformality for some K ≥ 1
due to Proposition 2.8. As f (Q(SZ) ∩ R̃) is negligible due to the change of vari-
ables formula for f , and as f−1 is 1-quasiconformal outside f (SZ ∩ R̃), we im-
mediately obtain mod Γ ≤ mod f−1Γ for every path family in f (R̃). Thus f is
1-quasiconformal. �

Proof of Proposition 6.6. This is proved by Proposition 6.11. �

Remark 6.15. Notice that if Lemma 6.10 holds for a given homeomorphism g : S1 → S1

having an admissible extension, even without assuming the absolutely continuity of g−1,
the rest of the proof of Proposition 6.11 (and Proposition 6.6) go through the same way.

Proof of Proposition 1.4. Given a quasisymmetry g : S1 → S1, its Beurling–Ahlfors
extension ψ : Z2 → Z2 is a quasisymmetry and ψ|Z2 is K-quasiconformal for some
K ≥ 1 [BA56]. Thus, if g−1 is absolutely continuous, g satisfies the assumptions
of Theorem 1.5. Alternatively, if H is as in Definition 6.5, Lemma 6.9 implies
that H−1 has outer dilatation KO(H−1) ≤ K. Proposition 2.8 implies that H is
quasiconformal; this self-improves to K-quasiconformality. Clearly H extends to
a K-quasiconformal homeomorphism H : S2 → Z̃. �

7. Concluding remarks

7.1. A point of positive capacity. For a general orientation-preserving homeo-
morphism g : S1 → S1, the Z̃ can have points of positive capacity (in the sense
that (7) can fail) even if g is locally bi-Lipschitz in the complement of a single
point. For example, having fixed arbitrary 1 < α < β, we consider the homeo-
morphism h : R→ R defined by

(41) h(x) =

{
xα, x ≥ 0,

− (−x)β, x < 0.

We construct a homeomorphism g : S1 → S1 by restricting h to the interval [−1, 1],
extending the restriction to R periodically, and by considering the covering map
θ(t) = (cos(πt), sin(πt), 0), and a homeomorphism g : S1 → S1 satisfying g ◦ θ =
θ ◦ h−1. Then g−1 is an L-Lipschitz homeomorphism for some L ≥ 1, and one
can check directly from the definition of dZ that the inclusion map ι̃1 : Z1 → Z̃ is
L-bi-Lipschitz onto its image.

Let x0 ∈ Z̃ denote the point corresponding to (1, 0, 0). By using the tech-
niques from Section 5, we can show that Z̃ \ {x0} can be covered by bi-Lipschitz
images of planar domains. Then [Iko21b, Theorem 1.3] implies that Z̃ \ {x0} is
1-quasiconformally equivalent to a Riemannian surface (that is homeomorphic
to a planar domain). Such a Riemannian surface can be conformally embedded
into S2 [AS60, Section III.4]. Hence there exists a 1-quasiconformal embedding
ψ : Z̃ \ {x0} → S2.

We claim that the complement of the image of ψ is a non-trivial continuum
(which is equivalent to the failure of (7) at x0). Indeed, otherwise ψ would extend
to a 1-quasiconformal homeomorphism and g would be a welding homeomor-
phism, as a consequence of Theorem 1.6. This would contradict both [Oik61,
Example 1] and [Vai89, Theorem 3], where both of these result show that g is not
a welding homeomorphism.



METRIC SPHERES FROM GLUING HEMISPHERES 27

In contrast, if we set α = β ≥ 1 in (41), the homeomorphism g is a quasisym-
metry, so Z̃ is quasiconformally equivalent to S2, as a consequence of Proposition
1.4.

7.2. Points of positive capacity. We construct another example for which points
of positive capacity occur. To this end, consider a Cantor set E ⊂ [0, 1] and

(42) h(x) =




(L1([0, 1] \ E))−1

∫ x

0
χR\E(y) dL1(y), 0 ≤ x ≤ 1,

x, otherwise.

Then h : R→ R is a Lipschitz homeomorphism coinciding with the identity map
outside (0, 1).

Next, consider the Möbius transformation θ1(z) = (z − i)/(z + i) from the
upper half-space H onto the Euclidean unit disk D. Let θ2(x, y) = (2x/(1 + x2 +
y2), 2y/(1 + x2 + y2), (1− x2 − y2)/(1 + x2 + y2)). Then θ := θ2 ◦ θ1 : H → Z2
defines a 1-quasiconformal homeomorphism, given that θ−1

2 is a(n orientation-
reversing) stereographic projection.

There exists a unique homeomorphism g : S1 → S1 satisfying g ◦ θ = θ ◦ h−1.
We see from (42) that g−1 is L-Lipschitz and ι̃1 is L-bi-Lipschitz with a constant L
depending only on L1(E). In particular, Z̃ = (Z, dZ).

We denote E′ = ι̃2(θ(E)) ⊂ Z̃, and apply [Iko21b, Theorem 1.3] as in Section
7.1, and find a 1-quasiconformal embedding ψ : Z̃ \ E′ → S2.

Consider on R2 the distance dE obtained as follows: For each absolutely con-
tinuous γ : [0, 1] → R2, denote `E(γ) :=

∫
γ χR2\E ds. We set dE(x, y) = inf `E(γ),

the infimum taken over absolutely continuous paths joining x to y.
We denote X = (R2, dE). The change of distance map H : R2 → X is a

1-Lipschitz homeomorphism that is a local isometry on R2 \ E. Moreover, if
θ : [0, 1]→ R2 is absolutely continuous, the metric speeds satisfy

(43) vH◦θ =
(

χR2\E ◦ θ
)
· vθ L1-almost everywhere.

The composition G = ι̃2 ◦ θ ◦
(

H|[−1,2]×[0,1]

)−1
is a 1-quasiconformal homeomor-

phism. This follows from Lemma 2.2, the equalities H1
Z̃
(E′) = 0 = H1

X(H(E)),
together with Proposition 3.6 and (43).

We consider a Cantor set E obtained from [IRar, Example 6.1]. The key prop-
erty of E is the following: there exists a path family Γ on [0, 1]2, each path joining
(0, 0) to (1, 0), such that mod HΓ ≥ (4π)−1 and mod Γ = 0. Given that G is
1-quasiconformal, the points ι̃2(θ(x)), where x = (0, 0), (1, 0), fail (7). Conse-
quently, Z̃ is not quasiconformally equivalent to S2, and the embedding ψ does
not have a quasiconformal extension Ψ : Z̃ → S2.

Question 7.1. Are there Cantor sets E with L1(E) > 0 such that a quasiconformal
embedding ψ : Z̃ \ E′ → S2 extends to a quasiconformal homeomorphism Ψ : Z̃ → S2?

Given a compact set F ⊂ Y with Y = R2 or Y = S2, we say that F has zero
absolute area if every 1-quasiconformal embedding f : Y \ F → S2 satisfiesH2

S2(S
2 \

f (Y \ F)) = 0.
We expect that the quasiconformal extension Ψ exists if and only if the set F =

S2 \ ψ(Z̃ \ E′) has zero absolute area; the "only if"-direction follows by applying
the techniques used in Section 4, by noting that the composition ( f ◦ ψ)−1 has a
continuous, monotone, and surjective extension π̃ with mod Γ ≤ mod π̃Γ for all
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path families. We expect that the "if"-direction follows from [IRar, Theorems 1.3
and 1.4, together with Lemma 5.1].

If E in Question 7.1 has zero absolute area, [IRar, Theorem 1.3] implies that the
change of distance map H is a 1-quasiconformal homeomorphism. Given that
the G above is 1-quasiconformal, one readily verifies that ι̃2 is a 1-quasiconformal
homeomorphism onto its image. We ask the following.

Question 7.2. Let E, g, and ψ be as in Question 7.1. If ι̃2 : Z2 → Z̃ is a 1-quasiconformal
parametrization of its image, does ψ : Z̃ \ E′ → S2 extend to a quasiconformal homeomor-
phism Ψ : Z̃ → S2? In particular, if E has zero absolute area, does F = S2 \ ψ(Z̃ \ E′)
have zero absolute area?

It follows from [Iko21a, Theorem 1.1 and Proposition 1.2] that the inclusion
map ι̃2 is a 1-quasiconformal homeomorphism if and only if there exists a quasi-
conformal homeomorphism h : ι̃2(Z2)→ D where D is the closed Euclidean unit
disk.

7.3. Welding homeomorphisms. We consider a welding homeomorphism g : S1 →
S1 with welding curve C ⊂ S2. Consider the monotone mapping π̃ : S2 → Z̃ ob-
tained from (14).

Question 7.3. If π̃ is a homeomorphism, is it a 1-quasiconformal homeomorphism?

We showed in Proposition 4.1 that if π̃ is not a homeomorphism, then Z̃ is
not quasiconformally equivalent to S2; the collapsing creates points of positive
capacity — by which we mean that (7) fails — in Z̃. Question 7.3 asks if the
collapsing is the only obstruction for quasiconformal uniformization. Lemma 4.8
reduces the question to understanding when π̃−1 ∈ N1,2(Z̃, S2).

7.4. Quasisymmetries. Observe that the assumptions of Proposition 1.4 are sat-
isfied by every quasisymmetry g : S1 → S1 that is strongly quasisymmetric [Sem86]
[Bis88] [AZ91] [BJ94]: for every ε > 0 there exists δ > 0 such that for every subarc
I ⊂ S1 and Borel set E ⊂ I,

H1
S1(E) ≤ δH1

S1(I) implies H1
S1(g(E)) ≤ εH1

S1(g(I)).

The welding curves corresponding to strongly quasisymmetric homeomorphisms
are special cases of the asymptotically conformal quasicircles; see [Pom78]. One
might ask whether or not Z̃ is quasiconformally equivalent to S2 whenever g is a
welding homeomorphism corresponding to such a curve. Corollary 4 of [Pom78]
provides us with an example of asymptotically conformal quasicircle C which has
an uncountable number of tangent points, with the tangent points dense in C, but
they also have zero 1-dimensional Hausdorff measure.

Lemma 7.4. There exists a quasisymmetric g : S1 → S1 with asymptotically conformal
welding curve C such that Z̃ is not homeomorphic to S2.

Lemma 7.4 follows from Proposition 4.1, Lemma 4.5, and the cited example.

Question 7.5. Is the answer to Question 7.3 yes if we also assume that g : S1 → S1 is a
quasisymmetry?

To answer Question 7.5 negatively, one needs to construct a quasisymmetry
ψ : Z2 → Z2, with g = ψ|S1 , for which the measures g∗H1

S1 and H1
S1 are not

mutually singular in any subarc I ⊂ S1, yet the corresponding Z̃ is not qua-
siconformally equivalent to Z̃. Equivalently, one only needs to show that the
homeomorphism H : S2 → Z̃, coinciding with ι̃1 in Z1 and with ι̃2 ◦ ψ in Z2, is
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not quasiconformal. By arguing as in the proof of Lemma 4.8, one sees that H is
quasiconformal if and only if H−1 ∈ N1,2(Z̃, S2).
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