Non-Parametric Mean Curvature Flow with Prescribed Contact Angle in Riemannian Products
Casteras, J.-B., Heinonen, E., Holopainen, I., & De Lira, J. H. (2022). Non-Parametric Mean Curvature Flow with Prescribed Contact Angle in Riemannian Products. Analysis and Geometry in Metric Spaces, 10(1), 31-39. https://doi.org/10.1515/agms-2020-0132
Julkaistu sarjassa
Analysis and Geometry in Metric SpacesPäivämäärä
2022Tekijänoikeudet
© 2022 J.-B. Casteras et al., published by De Gruyter.
Assuming that there exists a translating soliton u∞ with speed C in a domain Ω and with prescribed contact angle on ∂Ω, we prove that a graphical solution to the mean curvature ow with the same prescribed contact angle converges to u∞ + Ct as t → ∞. We also generalize the recent existence result of Gao, Ma, Wang and Weng to non-Euclidean settings under suitable bounds on convexity of Ω and Ricci curvature in Ω.
Julkaisija
De GruyterISSN Hae Julkaisufoorumista
2299-3274Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/104559197
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Stability of Sobolev inequalities on Riemannian manifolds with Ricci curvature lower bounds
Nobili, Francesco; Violo, Ivan Yuri (Elsevier, 2024)We study the qualitative stability of two classes of Sobolev inequalities on Riemannian manifolds. In the case of positive Ricci curvature, we prove that an almost extremal function for the sharp Sobolev inequality is close ... -
Riemannian Ricci curvature lower bounds in metric measure spaces with σ-finite measure
Ambrosio, Luigi; Gigli, Nicola; Mondino, Andrea; Rajala, Tapio (American Mathematical Society, 2015)In a prior work of the first two authors with Savar´e, a new Riemannian notion of a lower bound for Ricci curvature in the class of metric measure spaces (X, d, m) was introduced, and the corresponding class of spaces ... -
Conformality and Q-harmonicity in sub-Riemannian manifolds
Capogna, Luca; Citti, Giovanna; Le Donne, Enrico; Ottazzi, Alessandro (Elsevier Masson, 2019)We establish regularity of conformal maps between sub-Riemannian manifolds from regularity of Q-harmonic functions, and in particular we prove a Liouville-type theorem, i.e., 1-quasiconformal maps are smooth in all contact ... -
Infinitesimal Hilbertianity of Weighted Riemannian Manifolds
Lučić, Danka; Pasqualetto, Enrico (Canadian Mathematical Society, 2020)The main result of this paper is the following: any weighted Riemannian manifold (M,g,𝜇), i.e., a Riemannian manifold (M,g) endowed with a generic non-negative Radon measure 𝜇, is infinitesimally Hilbertian, which ... -
Universal Infinitesimal Hilbertianity of Sub-Riemannian Manifolds
Le Donne, Enrico; Lučić, Danka; Pasqualetto, Enrico (Springer, 2023)We prove that sub-Riemannian manifolds are infinitesimally Hilbertian (i.e., the associated Sobolev space is Hilbert) when equipped with an arbitrary Radon measure. The result follows from an embedding of metric derivations ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.