Euclid preparation : XV. Forecasting cosmological constraints for the Euclid and CMB joint analysis
Euclid Collaboration. (2022). Euclid preparation : XV. Forecasting cosmological constraints for the Euclid and CMB joint analysis. Astronomy and Astrophysics, 657, Article A91. https://doi.org/10.1051/0004-6361/202141556
Julkaistu sarjassa
Astronomy and AstrophysicsTekijät
Päivämäärä
2022Tekijänoikeudet
© Euclid Collaboration 2022
The combination and cross-correlation of the upcoming Euclid data with cosmic microwave background (CMB) measurements is a source of great expectation since it will provide the largest lever arm of epochs, ranging from recombination to structure formation across the entire past light cone. In this work, we present forecasts for the joint analysis of Euclid and CMB data on the cosmological parameters of the standard cosmological model and some of its extensions. This work expands and complements the recently published forecasts based on Euclid-specific probes, namely galaxy clustering, weak lensing, and their cross-correlation. With some assumptions on the specifications of current and future CMB experiments, the predicted constraints are obtained from both a standard Fisher formalism and a posterior-fitting approach based on actual CMB data. Compared to a Euclid-only analysis, the addition of CMB data leads to a substantial impact on constraints for all cosmological parameters of the standard Λ-cold-dark-matter model, with improvements reaching up to a factor of ten. For the parameters of extended models, which include a redshift-dependent dark energy equation of state, non-zero curvature, and a phenomenological modification of gravity, improvements can be of the order of two to three, reaching higher than ten in some cases. The results highlight the crucial importance for cosmological constraints of the combination and cross-correlation of Euclid probes with CMB data.
...
Julkaisija
EDP SciencesISSN Hae Julkaisufoorumista
0004-6361Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/104483769
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
The Euclid Consortium acknowledges the European Space Agency and a number of agencies and institutes that have supported the development of Euclid, in particular the Academy of Finland, the Agenzia Spaziale Italiana, the Belgian Science Policy, the Canadian Euclid Consortium, the Centre National d’Etudes Spatiales, the Deutsches Zentrum für Luft-und Raumfahrt, the Danish Space Research Institute, the Fundação para a Ciência e a Tecnologia, the Ministerio de Economia y Competitividad, the National Aeronautics and Space Administration, the Netherlandse Onderzoekschool Voor Astronomie, the Norwegian Space Agency, the Romanian Space Agency, the State Secretariat for Education, Research and Innovation (SERI) at the Swiss Space Office (SSO), and the United Kingdom Space Agency. A complete and detailed list is available on the Euclid web site (http://www.euclid-ec.org). Marco Baldi acknowledges support by the project ‘Combining Cosmic Microwave Background and Large Scale Structure data: an Integrated Approach for Addressing Fundamental Questions in Cosmology’, funded by the PRIN-MIUR 2017 grant 2017YJYZAH. Jose R. Bermejo-Climent is supported by an INAF fellowship under the agreement INAF-IAC. Mario Ballardini, Jose R. Bermejo-Climent, Fabio Finelli acknowledge financial contribution from the contract ASI/INAF for the Euclid mission n.2018-23-HH.0. DP, Fabio Finelli acknowledge financial support by ASI Grant 2016-24-H.0 and the agreement n.2020-9-HH.0 ASI-UniRM2 ‘Partecipazione italiana alla fase A della missione LiteBIRD’. The SISSA group acknowledges support by the ASI/INAF contracts Euclid-IC (I/031/10/0), ASI-COSMOS (cosmosnet.it), ASI-LiteBIRD contracts, the INDARK INFN Initiative (web.infn.it/CSN4/IS/Linea5/InDark), and the MIUR PRIN 2015 grant ‘Cosmology and Fundamental Physics: illuminating the Dark Universe with Euclid’. Giulio Fabbian acknowledges the support of the European Research Council under the Marie Skłodowska Curie actions through the Individual Global Fellowship No. 892401 PiCOGAMBAS. Stéphane Ilić acknowledges financial support from the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant Agreement No. 617656 ‘Theories and Models of the Dark Sector: Dark Matter, Dark Energy and Gravity. Louis Legrand acknowledges support from CNES’s funding of the Euclid project and a SNSF Eccellenza Professorial Fellowship (No. 186879). Domenico Marinucci acknowledges support from the MIUR Excellence Project awarded to the Department of Mathematics, Università di Roma Tor Vergata, CUP E83C18000100006. Marina Migliaccio was supported by the program for young researchers ‘Rita Levi Montalcini’ year 2015. Alessandro Renzi was supported by the project ‘Combining Cosmic Microwave Background and Large Scale Structure data: an Integrated Approach for Addressing Fundamental Questions in Cosmology’, funded by the MIUR Progetti di Rilevante Interesse Nazionale (PRIN) Bando 2017 – grant 2017YJYZAH; and acknowledges funding from Italian Ministry of Education, University and Research (MIUR) through the ‘Dipartimenti di eccellenza’ project Science of the Universe. Stefano Camera acknowledges support from the ‘Departments of Excellence 2018-2022’ Grant (L. 232/2016) awarded by the Italian Ministry of University and Research (MUR). Matteo Martinelli acknowledges support from the Centro de Excelencia Severo Ochoa Program SEV-2016-059 and from ‘la Caixa’ Foundation (ID 100010434), with fellowship code LCF/BQ/PI19/11690015. Alkistis Pourtsidou is a UK Research and Innovation Future Leaders Fellow, grant MR/S016066/1. Ziad Sakr acknowledges support from the IRAP and IN2P3 Lyon computing centers. Domenico Sapone acknowledges financial support from Fondecyt Regular project number 1200171. Isaac Tutusaus acknowledges support from the Spanish Ministry of Science, Innovation and Universities through grant ESP2017-89838, and the H2020 programme of the ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Euclid preparation : XVII. Cosmic Dawn Survey : Spitzer Space Telescope observations of the Euclid deep fields and calibration fields
Euclid Collaboration (EDP Sciences, 2022)We present a new infrared survey covering the three Euclid deep fields and four other Euclid calibration fields using Spitzer Space Telescope’s Infrared Array Camera (IRAC). We combined these new observations with all ... -
Euclid preparation : XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography
Euclid Collaboration (EDP Sciences, 2021)The analysis of weak gravitational lensing in wide-field imaging surveys is considered to be a major cosmological probe of dark energy. Our capacity to constrain the dark energy equation of state relies on an accurate ... -
Euclid preparation : XIII. Forecasts for galaxy morphology with the Euclid Survey using deep generative models
Euclid Collaboration (EDP Sciences, 2022)We present a machine learning framework to simulate realistic galaxies for the Euclid Survey, producing more complex and realistic galaxies than the analytical simulations currently used in Euclid. The proposed method ... -
Euclid preparation : XIX. Impact of magnification on photometric galaxy clustering
Euclid Collaboration (EDP Sciences, 2022)Aims. We investigate the importance of lensing magnification for estimates of galaxy clustering and its cross-correlation with shear for the photometric sample of Euclid. Using updated specifications, we study the impact ... -
Microscopic calculation of the β− decays of 151Sm, 171Tm, and 210Pb with implications to detection of the cosmic neutrino background
Kostensalo, J.; Kotila, J.; Suhonen, J. (Elsevier BV, 2023)
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.