Euclid preparation : XIII. Forecasts for galaxy morphology with the Euclid Survey using deep generative models
Euclid Collaboration. (2022). Euclid preparation : XIII. Forecasts for galaxy morphology with the Euclid Survey using deep generative models. Astronomy and Astrophysics, 657, Article A90. https://doi.org/10.1051/0004-6361/202141393
Julkaistu sarjassa
Astronomy and AstrophysicsTekijät
Päivämäärä
2022Tekijänoikeudet
© Euclid Collaboration 2022
We present a machine learning framework to simulate realistic galaxies for the Euclid Survey, producing more complex and realistic galaxies than the analytical simulations currently used in Euclid. The proposed method combines a control on galaxy shape parameters offered by analytic models with realistic surface brightness distributions learned from real Hubble Space Telescope observations by deep generative models. We simulate a galaxy field of 0.4 deg2 as it will be seen by the Euclid visible imager VIS, and we show that galaxy structural parameters are recovered to an accuracy similar to that for pure analytic Sérsic profiles. Based on these simulations, we estimate that the Euclid Wide Survey (EWS) will be able to resolve the internal morphological structure of galaxies down to a surface brightness of 22.5 mag arcsec−2, and the Euclid Deep Survey (EDS) down to 24.9 mag arcsec−2. This corresponds to approximately 250 million galaxies at the end of the mission and a 50% complete sample for stellar masses above 1010.6 M⊙ (resp. 109.6 M⊙) at a redshift z ∼ 0.5 for the EWS (resp. EDS). The approach presented in this work can contribute to improving the preparation of future high-precision cosmological imaging surveys by allowing simulations to incorporate more realistic galaxies.
...
Julkaisija
EDP SciencesISSN Hae Julkaisufoorumista
0004-6361Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/104477741
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Lisätietoja rahoituksesta
We thank the IAC where the first author was in long term visit during the production of this paper, with a special thanks to the TRACES team for their support. We would also like to thank the Direction Informatique de l’Observatoire (DIO) of the Paris Meudon Observatory for the management and support of the GPU we used to train our deep learning models. We also thank the Centre National d’Etudes Spatiales (CNES) and the Centre National de la Recherche Scientifique (CNRS) for the financial support of the PhD in which this study took place. This work has made use of CosmoHub. CosmoHub has been developed by the Port d’Informació Científica (PIC), maintained through a collaboration of the Institut de Física d’Altes Energies (IFAE) and the Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT) and the Institute of Space Sciences (CSIC and IEEC), and was partially funded by the “Plan Estatal de Investigación Científica y Técnica y de Innovación” program of the Spanish government. The Euclid Consortium acknowledges the European Space Agency and a number of agencies and institutes that have supported the development of Euclid, in particular the Academy of Finland, the Agenzia Spaziale Italiana, the Belgian Science Policy, the Canadian Euclid Consortium, the Centre National d’Etudes Spatiales, the Deutsches Zentrum für Luft- und Raumfahrt, the Danish Space Research Institute, the Fundação para a Ciência e a Tecnologia, the Ministerio de Economia y Competitividad, the National Aeronautics and Space Administration, the Netherlandse Onderzoekschool Voor Astronomie, the Norwegian Space Agency, the Romanian Space Agency, the State Secretariat for Education, Research and Innovation (SERI) at the Swiss Space Office (SSO), and the United Kingdom Space Agency. A complete and detailed list is available on the Euclid web site (http://www.euclid-ec.org). ...Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Euclid preparation : XVII. Cosmic Dawn Survey : Spitzer Space Telescope observations of the Euclid deep fields and calibration fields
Euclid Collaboration (EDP Sciences, 2022)We present a new infrared survey covering the three Euclid deep fields and four other Euclid calibration fields using Spitzer Space Telescope’s Infrared Array Camera (IRAC). We combined these new observations with all ... -
Euclid preparation : XXI. Intermediate-redshift contaminants in the search for z > 6 galaxies within the Euclid Deep Survey
Euclid Collaboration (EDP Sciences, 2022) -
Euclid preparation : XX. The Complete Calibration of the Color–Redshift Relation survey : LBT observations and data release
Euclid Collaboration (EDP Sciences, 2022)The Complete Calibration of the Color–Redshift Relation survey (C3R2) is a spectroscopic program designed to empirically calibrate the galaxy color–redshift relation to the Euclid depth (IE = 24.5), a key ingredient for ... -
Euclid preparation : XI. Mean redshift determination from galaxy redshift probabilities for cosmic shear tomography
Euclid Collaboration (EDP Sciences, 2021)The analysis of weak gravitational lensing in wide-field imaging surveys is considered to be a major cosmological probe of dark energy. Our capacity to constrain the dark energy equation of state relies on an accurate ... -
Euclid preparation : XXII. Selection of quiescent galaxies from mock photometry using machine learning
Euclid Collaboration (EDP Sciences, 2023)The Euclid Space Telescope will provide deep imaging at optical and near-infrared wavelengths, along with slitless near-infrared spectroscopy, across ~15 000deg2 of the sky. Euclid is expected to detect ~12 billion ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.