Näytä suppeat kuvailutiedot

dc.contributor.authorKuca, Borys
dc.date.accessioned2022-03-03T09:41:56Z
dc.date.available2022-03-03T09:41:56Z
dc.date.issued2023
dc.identifier.citationKuca, B. (2023). On several notions of complexity of polynomial progressions. <i>Ergodic Theory and Dynamical Systems</i>, <i>43</i>(4), 1269-1323. <a href="https://doi.org/10.1017/etds.2021.171" target="_blank">https://doi.org/10.1017/etds.2021.171</a>
dc.identifier.otherCONVID_104475861
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/80060
dc.description.abstractFor a polynomial progression (x, x + P1(y), . . . , x + Pt(y)), we define four notions of complexity: Host Kra complexity, Weyl complexity, true complexity and algebraic complexity. The first two describe the smallest characteristic factor of the progression, the third refers to the smallest-degree Gowers norm controlling the progression, and the fourth concerns algebraic relations between terms of the progressions. We conjecture that these four notions are equivalent, which would give a purely algebraic criterion for determining the smallest Host Kra factor or the smallest Gowers norm controlling a given progression. We prove this conjecture for all progressions whose terms only satisfy homogeneous algebraic relations and linear combinations thereof. This family of polynomial progressions includes, but is not limited to, arithmetic progressions, progressions with linearly independent polynomials P1, . . . ,Pt and progressions whose terms satisfy no quadratic relations. For progressions that satisfy only linear relations, such as (x, x + y2, x + 2y2, x + y3, x + 2y3), we derive several combinatorial and dynamical corollaries: first, an estimate for the count of such progressions in subsets of Z/NZ or totally ergodic dynamical systems; second, a lower bound for multiple recurrence; and third, a popular common difference result in Z/NZ. Lastly, we show that Weyl complexity and algebraic complexity always agree, which gives a straightforward algebraic description of Weyl complexity.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherCambridge University Press
dc.relation.ispartofseriesErgodic Theory and Dynamical Systems
dc.rightsCC BY 4.0
dc.subject.otherGowers norms
dc.subject.otherHost-Kra factors
dc.subject.othermultiple recurrence
dc.subject.otherpolynomial progressions
dc.titleOn several notions of complexity of polynomial progressions
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202203031775
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1269-1323
dc.relation.issn0143-3857
dc.relation.numberinseries4
dc.relation.volume43
dc.type.versionacceptedVersion
dc.rights.copyright© The Author(s), 2022. Published by Cambridge University Press
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysokombinatoriikka
dc.subject.ysodynaamiset systeemit
dc.subject.ysopolynomit
dc.subject.ysolukuteoria
dc.subject.ysolukujonot
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p4745
jyx.subject.urihttp://www.yso.fi/onto/yso/p38899
jyx.subject.urihttp://www.yso.fi/onto/yso/p17241
jyx.subject.urihttp://www.yso.fi/onto/yso/p1988
jyx.subject.urihttp://www.yso.fi/onto/yso/p18961
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1017/etds.2021.171
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0