dc.contributor.author | Danca, Marius-F. | |
dc.contributor.author | Kuznetsov, Nikolay | |
dc.date.accessioned | 2022-02-17T11:48:59Z | |
dc.date.available | 2022-02-17T11:48:59Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Danca, Marius-F., & Kuznetsov, N. (2022). D3 Dihedral Logistic Map of Fractional Order. <i>Mathematics</i>, <i>10</i>(2), Article 213. <a href="https://doi.org/10.3390/math10020213" target="_blank">https://doi.org/10.3390/math10020213</a> | |
dc.identifier.other | CONVID_104294910 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/79816 | |
dc.description.abstract | In this paper, the D3 dihedral logistic map of fractional order is introduced. The map presents a dihedral symmetry D3. It is numerically shown that the construction and interpretation of the bifurcation diagram versus the fractional order requires special attention. The system stability is determined and the problem of hidden attractors is analyzed. Furthermore, analytical and numerical results show that the chaotic attractor of integer order, with D3 symmetries, looses its symmetry in the fractional-order variant. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | MDPI AG | |
dc.relation.ispartofseries | Mathematics | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.subject.other | discrete fractional-order system | |
dc.subject.other | caputo delta fractional difference | |
dc.subject.other | hidden attractor | |
dc.subject.other | dihedral symmetry D3 | |
dc.title | D3 Dihedral Logistic Map of Fractional Order | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202202171543 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Computing, Information Technology and Mathematics | fi |
dc.contributor.oppiaine | Laskennallinen tiede | fi |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Computing, Information Technology and Mathematics | en |
dc.contributor.oppiaine | Computational Science | en |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 2227-7390 | |
dc.relation.numberinseries | 2 | |
dc.relation.volume | 10 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2022 by the authors. Licensee MDPI, Basel, Switzerland. | |
dc.rights.accesslevel | openAccess | fi |
dc.subject.yso | dynaamiset systeemit | |
dc.subject.yso | kaaosteoria | |
dc.subject.yso | attraktorit | |
dc.subject.yso | matemaattinen analyysi | |
dc.subject.yso | bifurkaatio | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38899 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p6339 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38900 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p19485 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p29101 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.3390/math10020213 | |
jyx.fundinginformation | N.K. and M.-F.D. acknowledge support from the Russian Science Foundation project 19-41-02002. | |
dc.type.okm | A1 | |