Show simple item record

dc.contributor.authorDanca, Marius-F.
dc.contributor.authorKuznetsov, Nikolay
dc.date.accessioned2022-02-17T11:48:59Z
dc.date.available2022-02-17T11:48:59Z
dc.date.issued2022
dc.identifier.citationDanca, Marius-F., & Kuznetsov, N. (2022). D3 Dihedral Logistic Map of Fractional Order. <i>Mathematics</i>, <i>10</i>(2), Article 213. <a href="https://doi.org/10.3390/math10020213" target="_blank">https://doi.org/10.3390/math10020213</a>
dc.identifier.otherCONVID_104294910
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/79816
dc.description.abstractIn this paper, the D3 dihedral logistic map of fractional order is introduced. The map presents a dihedral symmetry D3. It is numerically shown that the construction and interpretation of the bifurcation diagram versus the fractional order requires special attention. The system stability is determined and the problem of hidden attractors is analyzed. Furthermore, analytical and numerical results show that the chaotic attractor of integer order, with D3 symmetries, looses its symmetry in the fractional-order variant.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMDPI AG
dc.relation.ispartofseriesMathematics
dc.rightsCC BY-NC-ND 4.0
dc.subject.otherdiscrete fractional-order system
dc.subject.othercaputo delta fractional difference
dc.subject.otherhidden attractor
dc.subject.otherdihedral symmetry D3
dc.titleD3 Dihedral Logistic Map of Fractional Order
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202202171543
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineComputing, Information Technology and Mathematicsfi
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineComputing, Information Technology and Mathematicsen
dc.contributor.oppiaineComputational Scienceen
dc.contributor.oppiaineMathematical Information Technologyen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn2227-7390
dc.relation.numberinseries2
dc.relation.volume10
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysodynaamiset systeemit
dc.subject.ysokaaosteoria
dc.subject.ysoattraktorit
dc.subject.ysomatemaattinen analyysi
dc.subject.ysobifurkaatio
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p38899
jyx.subject.urihttp://www.yso.fi/onto/yso/p6339
jyx.subject.urihttp://www.yso.fi/onto/yso/p38900
jyx.subject.urihttp://www.yso.fi/onto/yso/p19485
jyx.subject.urihttp://www.yso.fi/onto/yso/p29101
dc.rights.urlhttps://creativecommons.org/licenses/by-nc-nd/4.0/
dc.relation.doi10.3390/math10020213
jyx.fundinginformationN.K. and M.-F.D. acknowledge support from the Russian Science Foundation project 19-41-02002.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY-NC-ND 4.0
Except where otherwise noted, this item's license is described as CC BY-NC-ND 4.0