Näytä suppeat kuvailutiedot

dc.contributor.authorFässler, Katrin
dc.contributor.authorPinamonti, Andrea
dc.date.accessioned2022-02-11T11:29:39Z
dc.date.available2022-02-11T11:29:39Z
dc.date.issued2022
dc.identifier.citationFässler, K., & Pinamonti, A. (2022). Loomis-Whitney inequalities in Heisenberg groups. <i>Mathematische Zeitschrift</i>, <i>301</i>(2), 1983-2010. <a href="https://doi.org/10.1007/s00209-022-02968-y" target="_blank">https://doi.org/10.1007/s00209-022-02968-y</a>
dc.identifier.otherCONVID_104220297
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/79754
dc.description.abstractThis note concerns Loomis–Whitney inequalities in Heisenberg groups Hn: |K|≲∏j=12n|πj(K)|n+1n(2n+1), K⊂Hn. Here πj, j=1,…,2n, are the vertical Heisenberg projections to the hyperplanes {xj=0}, respectively, and |⋅| refers to a natural Haar measure on either Hn, or one of the hyperplanes. The Loomis–Whitney inequality in the first Heisenberg group H1 is a direct consequence of known Lp improving properties of the standard Radon transform in R2. In this note, we show how the Loomis–Whitney inequalities in higher dimensional Heisenberg groups can be deduced by an elementary inductive argument from the inequality in H1. The same approach, combined with multilinear interpolation, also yields the following strong type bound: ∫Hn∏j=12nfj(πj(p))dp≲∏j=12n‖fj‖n(2n+1)n+1 for all nonnegative measurable functions f1,…,f2n on R2n. These inequalities and their geometric corollaries are thus ultimately based on planar geometry. Among the applications of Loomis–Whitney inequalities in Hn, we mention the following sharper version of the classical geometric Sobolev inequality in Hn: ‖u‖2n+22n+1≲∏j=12n‖Xju‖12n,u∈BV(Hn), where Xj, j=1,…,2n, are the standard horizontal vector fields in Hn. Finally, we also establish an extension of the Loomis–Whitney inequality in Hn, where the Heisenberg vertical coordinate projections π1,…,π2n are replaced by more general families of mappings that allow us to apply the same inductive approach based on the L3/2-L3 boundedness of an operator in the plane.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherSpringer Science and Business Media LLC
dc.relation.ispartofseriesMathematische Zeitschrift
dc.rightsCC BY 4.0
dc.subject.otherRadon transform
dc.subject.otherLoomis–Whitney inequality
dc.subject.otherHeisenberg group
dc.subject.otherSobolev inequality
dc.subject.otherisoperimetric inequality
dc.titleLoomis-Whitney inequalities in Heisenberg groups
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202202111492
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.contributor.oppiaineMatematiikkafi
dc.contributor.oppiaineMathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange1983-2010
dc.relation.issn0025-5874
dc.relation.numberinseries2
dc.relation.volume301
dc.type.versionpublishedVersion
dc.rights.copyright© The Author(s) 2022
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.relation.grantnumber328846
dc.relation.grantnumber321696
dc.subject.ysomatemaattinen analyysi
dc.subject.ysoepäyhtälöt
dc.subject.ysomittateoria
dc.subject.ysofunktionaalianalyysi
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p19485
jyx.subject.urihttp://www.yso.fi/onto/yso/p15720
jyx.subject.urihttp://www.yso.fi/onto/yso/p13386
jyx.subject.urihttp://www.yso.fi/onto/yso/p17780
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1007/s00209-022-02968-y
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramResearch costs of Academy Research Fellow, AoFen
jyx.fundingprogramAcademy Research Fellow, AoFen
jyx.fundingprogramAkatemiatutkijan tutkimuskulut, SAfi
jyx.fundingprogramAkatemiatutkija, SAfi
jyx.fundinginformationK. Fässler is supported by the Academy of Finland via the project Singular integrals, harmonic functions, and boundary regularity in Heisenberg groups, grant Nos. 321696, 328846. A. Pinamonti is partially supported by supported by the University of Trento and GNAMPA of INDAM.
dc.type.okmA1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0