Coadsorption of NRR and HER Intermediates Determines the Performance of Ru-N4 toward Electrocatalytic N2 Reduction
Wu, T., Melander, M. M., & Honkala, K. (2022). Coadsorption of NRR and HER Intermediates Determines the Performance of Ru-N4 toward Electrocatalytic N2 Reduction. ACS Catalysis, 12(4), 2505-2512. https://doi.org/10.1021/acscatal.1c05820
Published in
ACS CatalysisDate
2022Discipline
Nanoscience CenterResurssiviisausyhteisöFysikaalinen kemiaNanoscience CenterSchool of Resource WisdomPhysical ChemistryCopyright
© 2022 The Authors. Published by American Chemical Society
Electrochemical N2 reduction (NRR) to ammonia is seriously limited by the competing hydrogen evolution reaction (HER), but atomic-scale factors controlling HER/NRR competition are unknown. Herein we unveil the mechanism, thermodynamics, and kinetics determining the HER/NRR efficiency on the state-of-the-art NRR electrocatalyst, Ru-N4, using grand canonical ensemble density functional theory (GCE-DFT). We show that NRR/HER intermediates coadsorb on the catalyst where NRR intermediates suppress HER and selectivity is determined by the initial step forming *NNH or *H. Our results provide crucial insight into the complex NRR/HER competition, show the necessity of using GCE-DFT calculations, and suggest ways to improve NRR selectivity.
Publisher
American Chemical Society (ACS)ISSN Search the Publication Forum
2155-5435Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/104133239
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Academy Project, AoF; Academy Research Fellow, AoFAdditional information about funding
T.W. acknowledges the support by the National Natural Science Foundation of China (No. 11874005), the China National Postdoctoral Program for Innovative Talents (No. BX2021053), China Postdoctoral Science Foundation (No.2021M700680) and China Scholarship Council (No. 201906070128). T.W. also acknowledges the support of the Shang Hai Tong Ji Gao Ting Yao Environment Science and Technology Development Foundation. M.M.M. and K.H. gratefully acknowledge support by the Academy of Finland (grant numbers 317739 and 338228), and the Jane and Aatos Erkko Foundation (funding to the LACOR project). ...License
Related items
Showing items with similar title or keywords.
-
Cations Determine the Mechanism and Selectivity of Alkaline Oxygen Reduction Reaction on Pt(111)
Kumeda, Tomoaki; Laverdure, Laura; Honkala, Karoliina; Melander, Marko M.; Sakaushi, Ken (Wiley-VCH Verlag, 2023)The proton-coupled electron transfer (PCET) mechanism of the oxygen reduction reaction (ORR) is a long-standing enigma in electrocatalysis. Despite decades of research, the factors determining the microscopic mechanism of ... -
Synthesis of Polycyclic Indolines utilizing a reduction/cyclization cascade reaction
Zhang, Jingyu; Xia, Wei; Qu, Meilin; Huda, Saskia; Ward, Jas; Rissanen, Kari; Albrecht, Markus (Wiley-VCH Verlag, 2021)Subsequent reduction and dearomatizing cyclization reactions open up an entry into the synthesis of novel N-fused polycyclic indolines. The dearomatizing cyclization as key step of the sequence proceeds well with Cu(OTf)2 ... -
Understanding selective hydrogenation of phenylacetylene on PdAg single atom alloy : DFT insights on molecule size and surface ensemble effects
Ibrahim, Hanan H.; Weckman, Timo; Murzin, Dmitry Yu.; Honkala, Karoliina (Elsevier, 2024)Single atom alloys (SAAs) have proven to be effective catalysts, offering customizable properties for diverse chemical processes. Various metal combinations are used in SAAs and Pd dispersed materials are frequently employed ... -
Reducing the Irreducible : Dispersed Metal Atoms Facilitate Reduction of Irreducible Oxides
Korpelin, Ville; Melander, Marko M.; Honkala, Karoliina (American Chemical Society (ACS), 2022)Oxide reducibility is a central concept quantifying the role of the support in catalysis. While reducible oxides are often considered catalytically active, irreducible oxides are seen as inert supports. Enhancing the ... -
Synthesis of a Carbene-Stabilized (Diphospha)aminyl Radical and Its One Electron Oxidation and Reduction to Nonclassical Nitrenium and Amide Species
LaPierre, Etienne A.; Watanabe, Lara K.; Patrick, Brian O.; Rawson, Jeremy M.; Tuononen, Heikki M.; Manners, Ian (American Chemical Society (ACS), 2023)Herein, we report the synthesis of an acyclic carbene-stabilized diphospha(aminyl) PNP radical CAACMePNPCAACMe4 (CAACMe = 1-[2,6-bis(isopropyl)phenyl]-3,3,5,5-tetramethyl-2-pyrrolidinylidene) by a facile one-pot, seven-electron ...