Pain fingerprinting using multimodal sensing : pilot study
Keskinarkaus, A., Yang, R., Fylakis, A., Surat-E-Mostafa, Md., Hautala, A., Hu, Y., Peng, J., Zhao, G., Seppänen, T., & Karppinen, J. (2022). Pain fingerprinting using multimodal sensing : pilot study. Multimedia Tools and Applications, 81(4), 5717-5742. https://doi.org/10.1007/s11042-021-11761-8
Julkaistu sarjassa
Multimedia Tools and ApplicationsTekijät
Hu, Yong |
Päivämäärä
2022Tekijänoikeudet
© 2021 the Authors
Pain is a complex phenomenon, the experience of which varies widely across individuals. At worst, chronic pain can lead to anxiety and depression. Cost-effective strategies are urgently needed to improve the treatment of pain, and thus we propose a novel home-based pain measurement system for the longitudinal monitoring of pain experience and variation in different patients with chronic low back pain. The autonomous nervous system and audio-visual features are analyzed from heart rate signals, voice characteristics and facial expressions using a unique measurement protocol. Self-reporting is utilized for the follow-up of changes in pain intensity, induced by well-designed physical maneuvers, and for studying the consecutive trends in pain. We describe the study protocol, including hospital measurements and questionnaires and the implementation of the home measurement devices. We also present different methods for analyzing the multimodal data: electroencephalography, audio, video and heart rate. Our intention is to provide new insights using technical methodologies that will be beneficial in the future not only for patients with low back pain but also patients suffering from any chronic pain.
...
Julkaisija
SpringerISSN Hae Julkaisufoorumista
1380-7501Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/103541662
Metadata
Näytä kaikki kuvailutiedotKokoelmat
- Liikuntatieteiden tiedekunta [3136]
Lisätietoja rahoituksesta
Open Access funding provided by University of Oulu including Oulu University Hospital. University of Oulu, The National Technology Agency of Finland (Business Finland).Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Pre-attentive brain responses to mood-congruent facial expressions are sensitive to changes in depressive symptoms
Alhainen, Veera (2016)Tutkimukset ovat osoittaneet masentuneiden tarkkaavuuden kiinnittyvän helpommin mielialan kanssa yhteneväisiin kasvonilmeisiin. Ei ole kuitenkaan vielä varmaa voidaanko vääristymä havaita jo tarkkaavaisuutta edeltävässä ... -
A Deep Learning Model for Automatic Sleep Scoring using Multimodality Time Series
Yan, Rui; Li, Fan; Zhou, DongDong; Ristaniemi, Tapani; Cong, Fengyu (IEEE, 2020)Sleep scoring is a fundamental but time-consuming process in any sleep laboratory. Automatic sleep scoring is crucial and urgent to help address the increasing unmet need for sleep research. Therefore, this paper aims to ... -
Automatic sleep scoring : a deep learning architecture for multi-modality time series
Yan, Rui; Li, Fan; Zhou, Dong Dong; Ristaniemi, Tapani; Cong, Fengyu (Elsevier, 2021)Background: Sleep scoring is an essential but time-consuming process, and therefore automatic sleep scoring is crucial and urgent to help address the growing unmet needs for sleep research. This ... -
Effects of induced mood on the detection of facial expressions : an ERP study.
Juntumaa, Siiri; Heinonen, Niina (2019)Aiemmissa tutkimuksissa on havaittu, että masennus tai surullinen mieliala vaikuttavat kasvojen ilmeiden havaitsemiseen: Surullisten kasvojen havaitseminen on tarkempaa kuin neutraalien tai iloisten kasvojen sekä neutraalit ... -
Cognitive processing in depressive disorder from the perspectives of interoception, sensory processing sensitivity and event-related potentials to facial expressions
Alhainen, Sara; Tulla, Janina (2022)Masennus on varsin yleinen mielenterveyden häiriö, joka aiheuttaa sekä inhimillistä kärsimystä että mittavia yhteiskunnallisia kustannuksia. Häiriön hoitovaste on kuitenkin usein suhteellisen heikko. Jotta tulevaisuudessa ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.