Show simple item record

dc.contributor.authorKezilebieke, Shawulienu
dc.contributor.authorVaňo, Viliam
dc.contributor.authorHuda, Md N.
dc.contributor.authorAapro, Markus
dc.contributor.authorGanguli, Somesh C.
dc.contributor.authorLiljeroth, Peter
dc.contributor.authorLado, Jose L.
dc.date.accessioned2022-01-11T13:39:57Z
dc.date.available2022-01-11T13:39:57Z
dc.date.issued2022
dc.identifier.citationKezilebieke, S., Vaňo, V., Huda, M. N., Aapro, M., Ganguli, S. C., Liljeroth, P., & Lado, J. L. (2022). Moiré-Enabled Topological Superconductivity. <i>Nano Letters</i>, <i>22</i>(1), 328-333. <a href="https://doi.org/10.1021/acs.nanolett.1c03856" target="_blank">https://doi.org/10.1021/acs.nanolett.1c03856</a>
dc.identifier.otherCONVID_103615860
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/79307
dc.description.abstractThe search for artificial topological superconductivity has been limited by the stringent conditions required for its emergence. As exemplified by the recent discoveries of various correlated electronic states in twisted van der Waals materials, moiré patterns can act as a powerful knob to create artificial electronic structures. Here, we demonstrate that a moiré pattern between a van der Waals superconductor and a monolayer ferromagnet creates a periodic potential modulation that enables the realization of a topological superconducting state that would not be accessible in the absence of the moiré. The magnetic moiré pattern gives rise to Yu–Shiba–Rusinov minibands and periodic modulation of the Majorana edge modes that we detect using low-temperature scanning tunneling microscopy (STM) and spectroscopy (STS). Moiré patterns and, more broadly, periodic potential modulations are powerful tools to overcome the conventional constraints for realizing and controlling topological superconductivity.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Chemical Society (ACS)
dc.relation.ispartofseriesNano Letters
dc.rightsCC BY 4.0
dc.subject.otherscanning tunneling microscopy
dc.subject.othertopological superconductor
dc.subject.othermoiré pattern
dc.subject.other2D ferromagnet
dc.titleMoiré-Enabled Topological Superconductivity
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202201111085
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.format.pagerange328-333
dc.relation.issn1530-6984
dc.relation.numberinseries1
dc.relation.volume22
dc.type.versionpublishedVersion
dc.rights.copyright© 2022 the Authors
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysosuprajohteet
dc.subject.ysosuprajohtavuus
dc.subject.ysonanorakenteet
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p9946
jyx.subject.urihttp://www.yso.fi/onto/yso/p9398
jyx.subject.urihttp://www.yso.fi/onto/yso/p25315
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1021/acs.nanolett.1c03856
jyx.fundinginformationThis research made use of the Aalto Nanomicroscopy Center (Aalto NMC) facilities and was supported by the European Research Council (Grant ERC-2017-AdG No. 788185 “Artificial Designer Materials”), Academy of Finland (Academy Professor Funding Grants 318995 and 320555, Academy Research Fellow Grants 331342, 336243, 338478, and 346654), and the Jane and Aatos Erkko Foundation. We acknowledge the computational resources provided by the Aalto Science-IT project.
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0