Show simple item record

dc.contributor.authorKansanen, Kalle S. U.
dc.contributor.authorTassi, Camillo
dc.contributor.authorMishra, Harshad
dc.contributor.authorSillanpää, Mika A.
dc.contributor.authorHeikkilä, Tero T.
dc.date.accessioned2021-12-20T13:01:49Z
dc.date.available2021-12-20T13:01:49Z
dc.date.issued2021
dc.identifier.citationKansanen, K. S. U., Tassi, C., Mishra, H., Sillanpää, M. A., & Heikkilä, T. T. (2021). Magnomechanics in suspended magnetic beams. <i>Physical Review B</i>, <i>104</i>(21), Article 214416. <a href="https://doi.org/10.1103/physrevb.104.214416" target="_blank">https://doi.org/10.1103/physrevb.104.214416</a>
dc.identifier.otherCONVID_102402131
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/79072
dc.description.abstractCavity optomechanical systems have become a popular playground for studies of controllable nonlinear interactions between light and motion. Owing to the large speed of light, realizing cavity optomechanics in the microwave frequency range requires cavities up to several mm in size, hence making it hard to embed several of them on the same chip. An alternative scheme with much smaller footprint is provided by magnomechanics, where the electromagnetic cavity is replaced by a magnet undergoing ferromagnetic resonance, and the optomechanical coupling originates from magnetic shape anisotropy. Here, we consider the magnomechanical interaction occurring in a suspended magnetic beam, a scheme in which both magnetic and mechanical modes physically overlap and can also be driven individually. We show that a sizable interaction can be produced if the beam has some initial static deformation, as is often the case due to unequal strains in the constituent materials. We also show how the magnetism affects the magnetomotive detection of the vibrations, and how the magnomechanics interaction can be used in microwave signal amplification. Finally, we discuss experimental progress towards realizing the scheme.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherAmerican Physical Society (APS)
dc.relation.ispartofseriesPhysical Review B
dc.rightsIn Copyright
dc.titleMagnomechanics in suspended magnetic beams
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202112206054
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosDepartment of Physicsen
dc.contributor.oppiaineSoveltava fysiikkafi
dc.contributor.oppiaineApplied Physicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.description.reviewstatuspeerReviewed
dc.relation.issn2469-9950
dc.relation.numberinseries21
dc.relation.volume104
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 American Physical Society
dc.rights.accesslevelopenAccessfi
dc.relation.grantnumber317118
dc.subject.ysotiiviin aineen fysiikka
dc.subject.ysokvanttifysiikka
dc.subject.ysomagneettikentät
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p38692
jyx.subject.urihttp://www.yso.fi/onto/yso/p5564
jyx.subject.urihttp://www.yso.fi/onto/yso/p19032
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.1103/physrevb.104.214416
dc.relation.funderSuomen Akatemiafi
dc.relation.funderAcademy of Finlanden
jyx.fundingprogramAkatemiahanke, SAfi
jyx.fundingprogramAcademy Project, AoFen
jyx.fundinginformationThis work was supported by the Academy of Finland (Contracts No. 307757, No. 312057, No. 317118, and No. 321981), by the European Research Council (Contract No. 615755), and by the Centre for Quantum Engineering at Aalto University. K.S.U.K. acknowledges the financial support of the Magnus Ehrnrooth foundation. We acknowledge funding from the European Union’s Horizon 2020 research and innovation program under Grant Agreement No. 732894 (FETPRO HOT).


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright