Signatures and characterization of dominating Kerr nonlinearity between two driven systems with application to a suspended magnetic beam
Sokolov, A. M., & Heikkilä, T. T. (2024). Signatures and characterization of dominating Kerr nonlinearity between two driven systems with application to a suspended magnetic beam. Physical Review B, 109(1), Article 014408. https://doi.org/10.1103/PhysRevB.109.014408
Published in
Physical Review BDate
2024Copyright
©2024 American Physical Society
We consider a model of two harmonically driven damped harmonic oscillators that are coupled linearly and with a cross-Kerr coupling. We show how to distinguish this combination of coupling types from the case where a coupling of optomechanical type is present. This can be useful for the characterization of various nonlinear systems, such as mechanical oscillators, qubits, and hybrid systems. We then consider a hybrid system with linear and cross-Kerr interactions and a relatively high damping in one of the modes. We derive a quantum Hamiltonian of a doubly clamped magnetic beam, showing that the cross-Kerr coupling is prominent there. We discuss, in the classical limit, measurements of its linear response as well as the specific higher-harmonic responses. These frequency-domain measurements can allow estimating the magnitude of the cross-Kerr coupling or the magnon population.
Publisher
American Physical Society (APS)ISSN Search the Publication Forum
2469-9950Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/202089419
Metadata
Show full item recordCollections
Related funder(s)
Research Council of FinlandFunding program(s)
Academy Project, AoFAdditional information about funding
This work was supported by the Academy of Finland (Contract No. 321982).License
Related items
Showing items with similar title or keywords.
-
Magnomechanics in suspended magnetic beams
Kansanen, Kalle S. U.; Tassi, Camillo; Mishra, Harshad; Sillanpää, Mika A.; Heikkilä, Tero T. (American Physical Society (APS), 2021)Cavity optomechanical systems have become a popular playground for studies of controllable nonlinear interactions between light and motion. Owing to the large speed of light, realizing cavity optomechanics in the microwave ... -
Numerical simulation of free dissipative open quantum system and establishment of a formula for π
Agasti, Souvik (American Institute of Physics, 2020)We transform the system/reservoir coupling model into a one-dimensional semi-infinite discrete chain with nearest neighbor interaction through a unitary transformation, and, simulate the dynamics of free dissipative open ... -
Many-body Green's function theory of electrons and nuclei beyond the Born-Oppenheimer approximation
Härkönen, Ville J.; van Leeuwen, Robert; Gross, E. K. U. (American Physical Society, 2020)The method of many-body Green's functions is developed for arbitrary systems of electrons and nuclei starting from the full (beyond Born-Oppenheimer) Hamiltonian of Coulomb interactions and kinetic energies. The theory ... -
Dynamically screened vertex correction to GW
Pavlyukh, Yaroslav; Stefanucci, Gianluca; van Leeuwen, Robert (American Physical Society, 2020)Diagrammatic perturbation theory is a powerful tool for the investigation of interacting many-body systems, the self-energy operator Sigma encoding all the variety of scattering processes. In the simplest scenario of ... -
Weak localization at arbitrary disorder strength in systems with generic spin-dependent fields
Hijano, Alberto; Ilić, Stefan; Bergeret, F. Sebastián (American Physical Society, 2024)We present a theory of weak localization (WL) in the presence of generic spin-dependent fields, including any type of spin-orbit coupling, Zeeman fields, and nonhomogeneous magnetic textures. We go beyond the usual diffusive ...