Show simple item record

dc.contributor.authorNordhausen, Klaus
dc.contributor.authorRuiz-Gazen, Anne
dc.date.accessioned2021-12-20T12:14:52Z
dc.date.available2021-12-20T12:14:52Z
dc.date.issued2022
dc.identifier.citationNordhausen, K., & Ruiz-Gazen, A. (2022). On the usage of joint diagonalization in multivariate statistics. <i>Journal of Multivariate Analysis</i>, <i>188</i>, Article 104844. <a href="https://doi.org/10.1016/j.jmva.2021.104844" target="_blank">https://doi.org/10.1016/j.jmva.2021.104844</a>
dc.identifier.otherCONVID_101373479
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/79049
dc.description.abstractScatter matrices generalize the covariance matrix and are useful in many multivariate data analysis methods, including well-known principal component analysis (PCA), which is based on the diagonalization of the covariance matrix. The simultaneous diagonalization of two or more scatter matrices goes beyond PCA and is used more and more often. In this paper, we offer an overview of many methods that are based on a joint diagonalization. These methods range from the unsupervised context with invariant coordinate selection and blind source separation, which includes independent component analysis, to the supervised context with discriminant analysis and sliced inverse regression. They also encompass methods that handle dependent data such as time series or spatial data.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesJournal of Multivariate Analysis
dc.rightsCC BY 4.0
dc.subject.otherBlind source separation
dc.subject.otherDimension reduction
dc.subject.otherInvariant component selection
dc.subject.otherScatter matrices
dc.subject.otherSupervised dimension reduction
dc.titleOn the usage of joint diagonalization in multivariate statistics
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202112206032
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0047-259X
dc.relation.volume188
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 the Authors
dc.rights.accesslevelopenAccessfi
dc.subject.ysoriippumattomien komponenttien analyysi
dc.subject.ysomatemaattinen tilastotiede
dc.subject.ysomonimuuttujamenetelmät
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p38529
jyx.subject.urihttp://www.yso.fi/onto/yso/p3590
jyx.subject.urihttp://www.yso.fi/onto/yso/p2131
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.jmva.2021.104844
jyx.fundinginformationThe work of KN was supported by the Austrian Science Fund (FWF) under grant P31881-N32. ARG acknowledges funding from ANRunder grant ANR-17-EURE-0010 (Investissements d’Avenir program).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0