Abstract and concrete tangent modules on Lipschitz differentiability spaces
Ikonen, T., Pasqualetto, E., & Soultanis, E. (2022). Abstract and concrete tangent modules on Lipschitz differentiability spaces. Proceedings of the American Mathematical Society, 150(1), 327-343. https://doi.org/10.1090/proc/15656
Julkaistu sarjassa
Proceedings of the American Mathematical SocietyPäivämäärä
2022Tekijänoikeudet
© 2021 American Mathematical Society
We construct an isometric embedding from Gigli’s abstract tangent module into the concrete tangent module of a space admitting a (weak) Lipschitz differentiable structure, and give two equivalent conditions which characterize when the embedding is an isomorphism. Together with arguments from Bate, Kangasniemi, and Orponen, Cheeger’s differentiation theorem via the multilinear Kakeya inequality, arXiv:1904.00808 (2019), this equivalence is used to show that the –-type condition self-improves to .
We also provide a direct proof of a result by Gigli and Pasqualetto, Equivalence of two different notions of tangent bundle on rectifiable metric measure spaces, arXiv:1611.09645 that, for a space with a strongly rectifiable decomposition, Gigli’s tangent module admits an isometric embedding into the so-called Gromov–Hausdorff tangent module, without any a priori reflexivity assumptions.
Julkaisija
American Mathematical Society (AMS)ISSN Hae Julkaisufoorumista
0002-9939Asiasanat
Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/101849807
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Vilho, Yrjö ja Kalle Väisälän rahasto; Suomen AkatemiaRahoitusohjelmat(t)
Akatemiahanke, SALisätietoja rahoituksesta
The first author was supported by the Academy of Finland, project number 308659, and by the Vilho, Yrjö and Kalle Väisälä Foundation. The second author was supported by the Academy of Finland, project number 314789, and by the Balzan project led by Prof. Luigi Ambrosio. The third author was supported by the Swiss National Foundation, grant no. 182423.Lisenssi
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.