dc.contributor.author | Ikonen, Toni | |
dc.contributor.author | Pasqualetto, Enrico | |
dc.contributor.author | Soultanis, Elefterios | |
dc.date.accessioned | 2021-11-11T10:26:33Z | |
dc.date.available | 2021-11-11T10:26:33Z | |
dc.date.issued | 2022 | |
dc.identifier.citation | Ikonen, T., Pasqualetto, E., & Soultanis, E. (2022). Abstract and concrete tangent modules on Lipschitz differentiability spaces. <i>Proceedings of the American Mathematical Society</i>, <i>150</i>(1), 327-343. <a href="https://doi.org/10.1090/proc/15656" target="_blank">https://doi.org/10.1090/proc/15656</a> | |
dc.identifier.other | CONVID_101849807 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/78616 | |
dc.description.abstract | We construct an isometric embedding from Gigli’s abstract tangent module into the concrete tangent module of a space admitting a (weak) Lipschitz differentiable structure, and give two equivalent conditions which characterize when the embedding is an isomorphism. Together with arguments from Bate, Kangasniemi, and Orponen, Cheeger’s differentiation theorem via the multilinear Kakeya inequality, arXiv:1904.00808 (2019), this equivalence is used to show that the –-type condition self-improves to .
We also provide a direct proof of a result by Gigli and Pasqualetto, Equivalence of two different notions of tangent bundle on rectifiable metric measure spaces, arXiv:1611.09645 that, for a space with a strongly rectifiable decomposition, Gigli’s tangent module admits an isometric embedding into the so-called Gromov–Hausdorff tangent module, without any a priori reflexivity assumptions. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | American Mathematical Society (AMS) | |
dc.relation.ispartofseries | Proceedings of the American Mathematical Society | |
dc.rights | CC BY-NC-ND 4.0 | |
dc.title | Abstract and concrete tangent modules on Lipschitz differentiability spaces | |
dc.type | article | |
dc.identifier.urn | URN:NBN:fi:jyu-202111115634 | |
dc.contributor.laitos | Matematiikan ja tilastotieteen laitos | fi |
dc.contributor.laitos | Department of Mathematics and Statistics | en |
dc.contributor.oppiaine | Matematiikka | fi |
dc.contributor.oppiaine | Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 327-343 | |
dc.relation.issn | 0002-9939 | |
dc.relation.numberinseries | 1 | |
dc.relation.volume | 150 | |
dc.type.version | acceptedVersion | |
dc.rights.copyright | © 2021 American Mathematical Society | |
dc.rights.accesslevel | openAccess | fi |
dc.relation.grantnumber | | |
dc.relation.grantnumber | | |
dc.relation.grantnumber | 308659 | |
dc.relation.grantnumber | 314789 | |
dc.subject.yso | metriset avaruudet | |
dc.subject.yso | ekvivalenssi | |
dc.subject.yso | matematiikka | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p27753 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16524 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p3160 | |
dc.rights.url | https://creativecommons.org/licenses/by-nc-nd/4.0/ | |
dc.relation.doi | 10.1090/proc/15656 | |
dc.relation.funder | Väisälä Foundation | en |
dc.relation.funder | Väisälä Foundation | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Vilho, Yrjö ja Kalle Väisälän rahasto | fi |
dc.relation.funder | Vilho, Yrjö ja Kalle Väisälän rahasto | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Academy Project, AoF | en |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundingprogram | Akatemiahanke, SA | fi |
jyx.fundinginformation | The first author was supported by the Academy of Finland, project number 308659, and by the Vilho, Yrjö and Kalle Väisälä Foundation. The second author was supported by the Academy of Finland, project number 314789, and by the Balzan project led by Prof. Luigi Ambrosio. The third author was supported by the Swiss National Foundation, grant no. 182423. | |
dc.type.okm | A1 | |