Näytä suppeat kuvailutiedot

dc.contributor.authorArtyushenko, P. V.
dc.contributor.authorMironov, V. A.
dc.contributor.authorMorozov, D. I.
dc.contributor.authorShchugoreva, I. A.
dc.contributor.authorBorbone, N.
dc.contributor.authorTomilin, F. N.
dc.contributor.authorKichkailo, A. S.
dc.date.accessioned2021-11-11T08:04:28Z
dc.date.available2021-11-11T08:04:28Z
dc.date.issued2021
dc.identifier.citationArtyushenko, P. V., Mironov, V. A., Morozov, D. I., Shchugoreva, I. A., Borbone, N., Tomilin, F. N., & Kichkailo, A. S. (2021). Computational approach to design of aptamers to the receptor binding domain of SARS-CoV-2. <i>Sibirskoe Medicinskoe Obozrenie</i>, <i>2021</i>(2), 66-67. <a href="https://doi.org/10.20333/2500136-2021-2-66-67" target="_blank">https://doi.org/10.20333/2500136-2021-2-66-67</a>
dc.identifier.otherCONVID_98897858
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/78608
dc.description.abstractThe aim of the research. In this work, in silico selection of DNA-aptamers to the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein was performed using molecular modeling methods. Material and methods. A new computational approach to aptamer in silico selection is based on a cycle of simulations, including the stages of molecular modeling, molecular docking, molecular dynamic simulations, and quantum chemical calculations. To verify the obtained calculated results flow cytometry, fluorescence polarization, and small-angle X-ray scattering methods were applied. Results. An initial library consisted of 256 16-mer oligonucleotides was modeled. Based on molecular docking results, the only one aptamer (Apt16) was selected from the library as a starting aptamer to the RBD protein. For Apt16/RBD complex, molecular dynamic and quantum chemical calculations revealed the pairs of nucleotides and amino acids whose contribution to the binding between aptamer and RBD is the largest. Taking into account these data, Apt16 was subjected to the structure modifications in order to increase the binding with the RBD. Thus, a new aptamer Apt25 was designed. The procedure of 1) aptamer structure modeling/modification, 2) molecular docking, 3) molecular dynamic simulations, 4) quantum chemical calculations was performed sev-eral times. As a result, four aptamers (Apt16, Apt25, Apt27, Apt31) to the RBD were designed in silico without any preliminary experimental data. Binding of the each modeled aptamer to the RBD was studied in terms of interactions between residues in protein and nucleotides in the aptamers. Based on the simulation results, the strongest binding with the RBD was predicted for two Apt27 and Apt31aptamers. The calculated results are in good agreement with experimental data obtained by flow cytometry, fluorescence polarization, and small-angle X-ray scattering methods. Conclusion. The proposed computational approach to selection and refinement of aptamers is universal and can be used for wide range of molecular ligands and targets.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherKrasnoyarsk State Medical University
dc.relation.ispartofseriesSibirskoe Medicinskoe Obozrenie
dc.relation.urihttps://smr.krasgmu.ru/journal/2089_10_artyushenko.pdf
dc.rightsCC BY 4.0
dc.subject.otheraptamer
dc.subject.otherreceptor-binding domain
dc.subject.otherSARS-CoV-2
dc.subject.otherselection
dc.titleComputational approach to design of aptamers to the receptor binding domain of SARS-CoV-2
dc.typejournal article
dc.identifier.urnURN:NBN:fi:jyu-202111115626
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineFysikaalinen kemiafi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiainePhysical Chemistryen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/JournalItem
dc.type.coarhttp://purl.org/coar/resource_type/c_6501
dc.description.reviewstatusnonPeerReviewed
dc.format.pagerange66-67
dc.relation.issn1819-9496
dc.relation.numberinseries2
dc.relation.volume2021
dc.type.versionpublishedVersion
dc.rights.copyright© ARTYUSHENKO P. V., MIRONOV V. A., MOROZOV D. I., SHCHUGOREVA I. A., BORBONE N., TOMILIN F. N., KICHKAILO A. S.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysooligonukleotidit
dc.subject.ysokvanttikemia
dc.subject.ysolaskennallinen kemia
dc.subject.ysokoronavirukset
dc.subject.ysoreseptorit (biokemia)
dc.subject.ysoSARS-CoV-2-virus
dc.subject.ysomolekyylidynamiikka
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p9393
jyx.subject.urihttp://www.yso.fi/onto/yso/p19301
jyx.subject.urihttp://www.yso.fi/onto/yso/p23053
jyx.subject.urihttp://www.yso.fi/onto/yso/p29062
jyx.subject.urihttp://www.yso.fi/onto/yso/p38884
jyx.subject.urihttp://www.yso.fi/onto/yso/p38845
jyx.subject.urihttp://www.yso.fi/onto/yso/p29332
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.20333/2500136-2021-2-66-67
dc.type.okmB1


Aineistoon kuuluvat tiedostot

Thumbnail

Aineisto kuuluu seuraaviin kokoelmiin

Näytä suppeat kuvailutiedot

CC BY 4.0
Ellei muuten mainita, aineiston lisenssi on CC BY 4.0