Show simple item record

dc.contributor.authorCoronetti, Andrea
dc.date.accessioned2021-11-04T08:14:10Z
dc.date.available2021-11-04T08:14:10Z
dc.date.issued2021
dc.identifier.isbn978-951-39-8915-6
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/78496
dc.description.abstractRadiation effect testing is a key element of the radiation hardness assurance process needed to ensure the compliance with respect to the reliability and availability requirements of both space and accelerator electronic equipment. Existing standard for radiation testing were mainly tailored for radiation-hardened devices, which have less performance than commercial and industrial counterparts and makes them both less attractive and less feasible when it comes to deal with low-budgets, tight schedules and distributed systems. In this work emerging challenges and opportunities in terms of radiation effects criticality and testing methodologies are explored to assess their relevance and to provide the required radiation-matter interaction background required to tailor future guidelines and standards for the verification of the radiation performance of commercial devices to be used in harsh radiation environments. The main topics under analysis are: the sensitivity of deep sub-micron technologies to upsets caused by direct ionization from protons and their relevance for space and accelerator applications; the challenges brought by the physical interaction mechanisms specific of charged pions when it comes to characterize the mixed-field accelerator environment and the suitability of using mixed-field facilities for testing beyond accelerator needs; the possibility to use deep penetrating high-energy hadron beams as a proxy to standard heavy ion testing which can be exploited for fast component screening and system-level testing that are both of interest when it comes to answer the new demanding needs in terms of budget and schedule of the new space industry and of the distributed systems required to reliably operate the Large Hadron Collider. Experimental data and numerical analysis aimed at modelling and understanding the physical processes behind the interactions of the various particles are used to explore the potential threats brought to standard approaches by low-energy protons and high-energy pions as well as to assess the suitability of high-energy hadrons in representing the space environment. Firstly, the work achieved in this thesis reinforces even more the fact that direct ionization from proton is expected to be a severe concern for the upset rate and that a more methodological characterization of devices against these effects would be needed. Secondly, it is shown that the specific interaction mechanisms of pions are not a big concern for the high-energy hadron equivalence approximation and that little is lost if pions are treated just like they were protons. Finally, the high-energy hadron testing is expected to provide some valuable insight when it comes to verify devices or systems against the threats posed by the space environment, though within certain boundaries.en
dc.description.abstractSäteilynkestotestaus on avainasemassa huolehdittaessa avaruus- sekä kiihdytinsovelluksissa käytettävien elektroniikkajärjestelmien luotettavuudesta ja saatavuudesta. Olemassa olevat testausstandardit ovat pääasiassa kehitetty säteilynkestävien komponenttien näkökulmasta. Nämä komponentit ovat lähtökohtaisesti yleisesti suoritusteholtaan heikompia ja kalliimpia kuin vastaavat kaupalliset ja teolliset komponentit, mikä tekee niistä epäkäytännöllisiä käyttää matalan budjetin, tiukkojen aikataulujen sekä hajautettujen järjestelmien sovelluksissa. Tämä työ tarkastelee säteilyilmiöiden kriittisyyden ja testausmetodien luomia haasteita ja mahdollisuuksia, jotta saadaan paremmin selville niiden merkitys tulevaisuuden testistandardeja ja ohjeistuksia määritettäessä. Pääasiassa tarkastelun kohteena ovat (1) korkean integraatioasteen teknologioissa havaittavat, matalaenergisten protonien suorasta ionisaatiosta johtuvat, virheet ja niiden merkitys avaruus- ja kiihdytinsovelluksissa, (2) varattujen pionien vuorovaikutusmekanismit ja niiden luomat haasteet luonnehdittaessa kiihdyttimillä vallitsevia säteily-ympäristöjä ja niiden käyttöä muissa kuin kiihdytinsovelluksissa, (3) korkean läpäisykyvyn hadronisuihkujen käyttömahdollisuudet raskasionitestien rinnalla nopeaan komponenttien valinnassa ja järjestelmätason testaamisessa, mitkä molemmat ovat kiinnostavia otettaessa huomioon rajoitetun budjetin ja aikataulujen projektit, esim. New Space -teollisuudessa ja LHC kiihdyttimen hajautetuissa järjestelmissä. Kokeelliset tulokset ja numeeriset analyysit, joiden avulla säteilyilmiöiden takana olevia fysikaalisia prosesseja pyritään mallintamaan ja ymmärtämään, on käytetty selvittämään perinteisten testauskäytäntöjen mahdollisia vajaavaisuuksia. Pääasiallinen työssä tehdyt havainnot vahvistavat jo olemassa olevaa arviota siitä, että protonien primäärisestä ionisaatiosta aiheutuvat virheet tulevat kasvavissa määrin olemaan ongelma tulevaisuuden teknologioissa, ja että näiden ilmiöiden tutkimusta tulee jatkaa. Toisaalta myös havaittiin, ettei pionien tietyt vuorovaikutusmekanismit eivät ole huolenaihe arvioitaessa korkeaenergisten hadronien aiheuttamien säteilyilmiöiden vastaavuutta pionien kanssa. Toisin sanoen, isoa virhettä ei tehdä, jos pioneja käsitellään analyyseissä protonien kaltaisina hiukkasina. Ja lopuksi korkeaenergisillä hadroneilla tehtävällä testauksella uskotaan, tietyissä rajoissa, saavutettavan merkittävää tietoa tutkittaessa komponenttien ja/tai järjestelmien kohtaamia uhkia säteily-ympäristöissä.fi
dc.relation.ispartofseriesJYU dissertations
dc.relation.haspart<b>Artikkeli I:</b>Coronetti, A., Alía, R. G., Cecchetto, M., Hajdas, W., Söderström, D., Javanainen, A., & Saigné, F. (2020). The Pion Single-Event Effect Resonance and its Impact in an Accelerator Environment. I<i>IEEE Transactions on Nuclear Science 67(7), 1606-1613.</i> DOI: <a href="https://doi.org/10.1109/TNS.2020.2978228"target="_blank">10.1109/TNS.2020.2978228</a>
dc.relation.haspart<b>Artikkeli II:</b> Coronetti, A., Garcìa Alìa, R., Wang, J., Tali, M., Cecchetto, M., Cazzaniga, C., Javanainen, A., Saigné, F., & Leroux, P. (2021). Assessment of Proton Direct Ionization for the Radiation Hardness Assurance of Deep Submicron SRAMs Used in Space Applications. <i>IEEE Transactions on Nuclear Science, 68(5), 937-948.</i> DOI: <a href="https://doi.org/10.1109/TNS.2021.3061209"target="_blank">10.1109/TNS.2021.3061209</a>
dc.relation.haspart<b>Artikkeli III:</b> Coronetti, A., Garcìa Alìa, R., Budroweit, J., Rajkowski, T., Da Costa Lopes, I., Niskanen, K., Söderström, D., Cazzaniga, C., Ferraro, R., Danzeca, S., Mekki, J., Manni, F., Dangla, D., Virmontois, C., Kerboub, N., Koelpin, A., Saigné, F., Wang, P., Pouget, V., . . . Coq Germanicus, R. (2021). Radiation hardness assurance through system-level testing : risk acceptance, facility requirements, test methodology and data exploitation. <i>IEEE Transactions on Nuclear Science, 68(5), 958-969.</i> DOI: <a href="https://doi.org/10.1109/TNS.2021.3061197"target="_blank">10.1109/TNS.2021.3061197</a>
dc.relation.haspart<b>Artikkeli IV:</b> Coronetti, A., Alia Garcia, R., Cerutti, F., Hajdas, W., Söderström, D., Javanainen, A., & Saigne, F. (2021). The pion single-event latch-up cross-section enhancement : mechanisms and consequences for accelerator hardness assurance. <i>IEEE Transactions on Nuclear Science, 68(8), 1613-1622. </i> DOI: <a href="https://doi.org/10.1109/TNS.2021.3070216"target="_blank">10.1109/TNS.2021.3070216</a>
dc.subject.otherpionsen
dc.subject.otherpionitfi
dc.subject.otherheavy ionsen
dc.subject.otherraskaat hiukkasetfi
dc.subject.otherhigh-energy hadronsen
dc.subject.otherkorkeaenergiset hadronitfi
dc.subject.otheracceleratoren
dc.subject.otherkiihdytinfi
dc.subject.otherspaceen
dc.subject.otheravaruusfi
dc.subject.othersingle-event effecten
dc.subject.otheryksittäisten hiukkasten aiheuttamat vauriotfi
dc.subject.othercross-sectionen
dc.subject.othervaikutusalafi
dc.subject.otherradiation hardness assuranceen
dc.subject.othersäteilynkestotestausfi
dc.subject.otherFLUKAen
dc.subject.otherGeant4en
dc.subject.othernuclear interactionsen
dc.subject.otherydinreaktiotfi
dc.subject.otherproton direct ionizationen
dc.subject.otherprotonien ionisaatiofi
dc.subject.otherupset rateen
dc.subject.othervirhetiheysfi
dc.subject.otherprediction methodologiesen
dc.subject.otherennustusmetoditfi
dc.subject.otherMonte-Carlo simulationsen
dc.subject.otherMonte Carlo simulaatiotfi
dc.subject.othersystem-level testingen
dc.subject.otherjärjestelmätestausfi
dc.subject.otherrisk acceptanceen
dc.subject.otherriskinsietofi
dc.subject.otherfacilitiesen
dc.subject.othertest methodologyen
dc.subject.othertestausmetoditfi
dc.subject.othersmall satellitesen
dc.subject.otherpiensatelliititfi
dc.subject.otherCOTSen
dc.subject.otherkaupalliset komponentitfi
dc.titleRelevance and guidelines of radiation effect testing beyond the standards for electronic devices and systems used in space and at accelerators
dc.identifier.urnURN:ISBN:978-951-39-8915-6
dc.subject.ysoprotonsen
dc.subject.ysoprotonitfi
dc.subject.ysoneutronsen
dc.subject.ysoneutronitfi
dc.date.digitised


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record