dc.contributor.author | Pihlajamäki, Antti | |
dc.contributor.author | Linja, Joakim | |
dc.contributor.author | Hämäläinen, Joonas | |
dc.contributor.author | Nieminen, Paavo | |
dc.contributor.author | Malola, Sami | |
dc.contributor.author | Kärkkäinen, Tommi | |
dc.contributor.author | Häkkinen, Hannu | |
dc.date.accessioned | 2021-10-29T07:19:59Z | |
dc.date.available | 2021-10-29T07:19:59Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Pihlajamäki, A., Linja, J., Hämäläinen, J., Nieminen, P., Malola, S., Kärkkäinen, T., & Häkkinen, H. (2021). Orientation Adaptive Minimal Learning Machine for Directions of Atomic Forces. In <i>ESANN 2021 : Proceedings of the 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning Online event (Bruges, Belgium), October 06 - 08</i> (pp. 529-534). ESANN. <a href="https://doi.org/10.14428/esann/2021.es2021-34" target="_blank">https://doi.org/10.14428/esann/2021.es2021-34</a> | |
dc.identifier.other | CONVID_101573464 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/78423 | |
dc.description.abstract | Machine learning (ML) force fields are one of the most common applications of ML in nanoscience. However, commonly these methods are trained on potential energies of atomic systems and force vectors are omitted. Here we present a ML framework, which tackles the greatest difficulty on using forces in ML: accurate prediction of force direction. We use the idea of Minimal Learning Machine to device a method which can adapt to the orientation of an atomic environment to estimate the directions of force vectors. The method was tested with linear alkane molecules. | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | ESANN | |
dc.relation.ispartof | ESANN 2021 : Proceedings of the 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning Online event (Bruges, Belgium), October 06 - 08 | |
dc.relation.uri | https://www.esann.org/sites/default/files/proceedings/2021/ES2021-34.pdf | |
dc.rights | In Copyright | |
dc.subject.other | machine learning | |
dc.subject.other | molecules | |
dc.subject.other | atoms | |
dc.subject.other | force directions | |
dc.title | Orientation Adaptive Minimal Learning Machine for Directions of Atomic Forces | |
dc.type | conference paper | |
dc.identifier.urn | URN:NBN:fi:jyu-202110295450 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Fysiikan laitos | fi |
dc.contributor.laitos | Kemian laitos | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.laitos | Department of Physics | en |
dc.contributor.laitos | Department of Chemistry | en |
dc.contributor.oppiaine | Koulutusteknologia ja kognitiotiede | fi |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Computing Education Research | fi |
dc.contributor.oppiaine | Tutkintokoulutus | fi |
dc.contributor.oppiaine | Human and Machine based Intelligence in Learning | fi |
dc.contributor.oppiaine | Nanoscience Center | fi |
dc.contributor.oppiaine | Learning and Cognitive Sciences | en |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.contributor.oppiaine | Computing Education Research | en |
dc.contributor.oppiaine | Degree Education | en |
dc.contributor.oppiaine | Human and Machine based Intelligence in Learning | en |
dc.contributor.oppiaine | Nanoscience Center | en |
dc.type.uri | http://purl.org/eprint/type/ConferencePaper | |
dc.relation.isbn | 978-2-87587-082-7 | |
dc.type.coar | http://purl.org/coar/resource_type/c_5794 | |
dc.description.reviewstatus | peerReviewed | |
dc.format.pagerange | 529-534 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © Authors, 2021 | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | conferenceObject | |
dc.relation.conference | European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning | |
dc.relation.grantnumber | 315550 | |
dc.relation.grantnumber | 315549 | |
dc.relation.grantnumber | 311877 | |
dc.subject.yso | nanotieteet | |
dc.subject.yso | atomit | |
dc.subject.yso | molekyylit | |
dc.subject.yso | koneoppiminen | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p6228 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2985 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p2984 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p21846 | |
dc.rights.url | http://rightsstatements.org/page/InC/1.0/?language=en | |
dc.relation.doi | 10.14428/esann/2021.es2021-34 | |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Research Council of Finland | en |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
dc.relation.funder | Suomen Akatemia | fi |
jyx.fundingprogram | Academy Programme, AoF | en |
jyx.fundingprogram | Academy Programme, AoF | en |
jyx.fundingprogram | Research profiles, AoF | en |
jyx.fundingprogram | Akatemiaohjelma, SA | fi |
jyx.fundingprogram | Akatemiaohjelma, SA | fi |
jyx.fundingprogram | Profilointi, SA | fi |
jyx.fundinginformation | This work was supported by Academy of Finland through the AIPSE research program with grant 315549 to H.H. and 315550 to T.K., through the Universities Profiling Actions with grant 311877 to T.K., and through H.H.’s Academy Professorship. Work was also supported by ”Antti ja Jenny Wihurin rahasto” via personal funding to A.P.. | |
dc.type.okm | A4 | |