Show simple item record

dc.contributor.authorPihlajamäki, Antti
dc.contributor.authorLinja, Joakim
dc.contributor.authorHämäläinen, Joonas
dc.contributor.authorNieminen, Paavo
dc.contributor.authorMalola, Sami
dc.contributor.authorKärkkäinen, Tommi
dc.contributor.authorHäkkinen, Hannu
dc.date.accessioned2021-10-29T07:19:59Z
dc.date.available2021-10-29T07:19:59Z
dc.date.issued2021
dc.identifier.citationPihlajamäki, A., Linja, J., Hämäläinen, J., Nieminen, P., Malola, S., Kärkkäinen, T., & Häkkinen, H. (2021). Orientation Adaptive Minimal Learning Machine for Directions of Atomic Forces. In <i>ESANN 2021 : Proceedings of the 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning Online event (Bruges, Belgium), October 06 - 08</i> (pp. 529-534). ESANN. <a href="https://doi.org/10.14428/esann/2021.es2021-34" target="_blank">https://doi.org/10.14428/esann/2021.es2021-34</a>
dc.identifier.otherCONVID_101573464
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/78423
dc.description.abstractMachine learning (ML) force fields are one of the most common applications of ML in nanoscience. However, commonly these methods are trained on potential energies of atomic systems and force vectors are omitted. Here we present a ML framework, which tackles the greatest difficulty on using forces in ML: accurate prediction of force direction. We use the idea of Minimal Learning Machine to device a method which can adapt to the orientation of an atomic environment to estimate the directions of force vectors. The method was tested with linear alkane molecules.en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherESANN
dc.relation.ispartofESANN 2021 : Proceedings of the 29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning Online event (Bruges, Belgium), October 06 - 08
dc.relation.urihttps://www.esann.org/sites/default/files/proceedings/2021/ES2021-34.pdf
dc.rightsIn Copyright
dc.subject.othermachine learning
dc.subject.othermolecules
dc.subject.otheratoms
dc.subject.otherforce directions
dc.titleOrientation Adaptive Minimal Learning Machine for Directions of Atomic Forces
dc.typeconference paper
dc.identifier.urnURN:NBN:fi:jyu-202110295450
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFysiikan laitosfi
dc.contributor.laitosKemian laitosfi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.laitosDepartment of Physicsen
dc.contributor.laitosDepartment of Chemistryen
dc.contributor.oppiaineKoulutusteknologia ja kognitiotiedefi
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineComputing Education Researchfi
dc.contributor.oppiaineTutkintokoulutusfi
dc.contributor.oppiaineHuman and Machine based Intelligence in Learningfi
dc.contributor.oppiaineNanoscience Centerfi
dc.contributor.oppiaineLearning and Cognitive Sciencesen
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineComputing Education Researchen
dc.contributor.oppiaineDegree Educationen
dc.contributor.oppiaineHuman and Machine based Intelligence in Learningen
dc.contributor.oppiaineNanoscience Centeren
dc.type.urihttp://purl.org/eprint/type/ConferencePaper
dc.relation.isbn978-2-87587-082-7
dc.type.coarhttp://purl.org/coar/resource_type/c_5794
dc.description.reviewstatuspeerReviewed
dc.format.pagerange529-534
dc.type.versionpublishedVersion
dc.rights.copyright© Authors, 2021
dc.rights.accesslevelopenAccessfi
dc.type.publicationconferenceObject
dc.relation.conferenceEuropean Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
dc.relation.grantnumber315550
dc.relation.grantnumber315549
dc.relation.grantnumber311877
dc.subject.ysonanotieteet
dc.subject.ysoatomit
dc.subject.ysomolekyylit
dc.subject.ysokoneoppiminen
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p6228
jyx.subject.urihttp://www.yso.fi/onto/yso/p2985
jyx.subject.urihttp://www.yso.fi/onto/yso/p2984
jyx.subject.urihttp://www.yso.fi/onto/yso/p21846
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.14428/esann/2021.es2021-34
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderResearch Council of Finlanden
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
dc.relation.funderSuomen Akatemiafi
jyx.fundingprogramAcademy Programme, AoFen
jyx.fundingprogramAcademy Programme, AoFen
jyx.fundingprogramResearch profiles, AoFen
jyx.fundingprogramAkatemiaohjelma, SAfi
jyx.fundingprogramAkatemiaohjelma, SAfi
jyx.fundingprogramProfilointi, SAfi
jyx.fundinginformationThis work was supported by Academy of Finland through the AIPSE research program with grant 315549 to H.H. and 315550 to T.K., through the Universities Profiling Actions with grant 311877 to T.K., and through H.H.’s Academy Professorship. Work was also supported by ”Antti ja Jenny Wihurin rahasto” via personal funding to A.P..
dc.type.okmA4


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright