Free boundary methods and non-scattering phenomena
Salo, M., & Shahgholian, H. (2021). Free boundary methods and non-scattering phenomena. Research in the Mathematical Sciences, 8(4), Article 58. https://doi.org/10.1007/s40687-021-00294-z
Julkaistu sarjassa
Research in the Mathematical SciencesPäivämäärä
2021Oppiaine
MatematiikkaInversio-ongelmien huippuyksikköMathematicsCentre of Excellence in Inverse ProblemsTekijänoikeudet
© The Author(s) 2021.
We study a question arising in inverse scattering theory: given a penetrable obstacle, does there exist an incident wave that does not scatter? We show that every penetrable obstacle with real-analytic boundary admits such an incident wave. At zero frequency, we use quadrature domains to show that there are also obstacles with inward cusps having this property. In the converse direction, under a nonvanishing condition for the incident wave, we show that there is a dichotomy for boundary points of any penetrable obstacle having this property: either the boundary is regular, or the complement of the obstacle has to be very thin near the point. These facts are proved by invoking results from the theory of free boundary problems.
Julkaisija
Springer Science and Business Media LLCISSN Hae Julkaisufoorumista
2522-0144Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/101562907
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Euroopan komissio; Suomen AkatemiaRahoitusohjelmat(t)
Huippuyksikkörahoitus, SA; Akatemiahanke, SA
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Lisätietoja rahoituksesta
M. S. was supported by the Academy of Finland (Finnish Centre of Excellence in Inverse Modelling and Imaging, Grant Numbers 312121 and 309963) and by the European Research Council under Horizon 2020 (ERC CoG 770924). H. Sh. was supported in part by Swedish Research Council.Lisenssi
Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Fixed Angle Inverse Scattering for Almost Symmetric or Controlled Perturbations
Rakesh; Salo, Mikko (Society for Industrial & Applied Mathematics (SIAM), 2020)We consider the fixed angle inverse scattering problem and show that a compactly supported potential is uniquely determined by its scattering amplitude for two opposite fixed angles. We also show that almost symmetric or ... -
Refined instability estimates for some inverse problems
Kow, Pu-Zhao; Wang, Jenn-Nan (American Institute of Mathematical Sciences (AIMS), 2022)Many inverse problems are known to be ill-posed. The ill-posedness can be manifested by an instability estimate of exponential type, first derived by Mandache [29]. In this work, based on Mandache's idea, we refine the ... -
On Positivity Sets for Helmholtz Solutions
Kow, Pu-Zhao; Salo, Mikko; Shahgholian, Henrik (Springer, 2023)We address the question of finding global solutions of the Helmholtz equation that are positive in a given set. This question arises in inverse scattering for penetrable obstacles. In particular, we show that there are ... -
Fixed angle inverse scattering in the presence of a Riemannian metric
Ma, Shiqi; Salo, Mikko (Walter de Gruyter GmbH, 2022)We consider a fixed angle inverse scattering problem in the presence of a known Riemannian metric. First, assuming a no caustics condition, we study the direct problem by utilizing the progressing wave expansion. Under a ... -
Optimality of Increasing Stability for an Inverse Boundary Value Problem
Kow, Pu-Zhao; Uhlmann, Gunther; Wang, Jenn-Nan (Society for Industrial & Applied Mathematics (SIAM), 2021)In this work we study the optimality of increasing stability of the inverse boundary value problem (IBVP) for the Schrödinger equation. The rigorous justification of increasing stability for the IBVP for the Schrödinger ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.