Show simple item record

dc.contributor.authorMukherjee, Shirsho
dc.contributor.authorZhong, Xiao
dc.date.accessioned2021-10-01T07:14:11Z
dc.date.available2021-10-01T07:14:11Z
dc.date.issued2021
dc.identifier.citationMukherjee, S., & Zhong, X. (2021). C1,α-regularity for variational problems in the Heisenberg group. <i>Analysis and PDE</i>, <i>14</i>(2), 567-594. <a href="https://doi.org/10.2140/apde.2021.14.567" target="_blank">https://doi.org/10.2140/apde.2021.14.567</a>
dc.identifier.otherCONVID_86919991
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/77976
dc.description.abstractWe study the regularity of minima of scalar variational integrals of p-growth, 1<p><∞, in the Heisenberg group and prove the Hölder continuity of horizontal gradient of minima.</p>en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherMathematical Sciences Publishers
dc.relation.ispartofseriesAnalysis and PDE
dc.rightsIn Copyright
dc.subject.otherHeisenberg groups
dc.subject.otherp-Laplacian
dc.subject.otherweak solutions
dc.subject.otherregularity
dc.subject.othersubelliptic equations
dc.titleC1,α-regularity for variational problems in the Heisenberg group
dc.typearticle
dc.identifier.urnURN:NBN:fi:jyu-202110015039
dc.contributor.laitosMatematiikan ja tilastotieteen laitosfi
dc.contributor.laitosDepartment of Mathematics and Statisticsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.description.reviewstatuspeerReviewed
dc.format.pagerange567-594
dc.relation.issn2157-5045
dc.relation.numberinseries2
dc.relation.volume14
dc.type.versionacceptedVersion
dc.rights.copyright© Authors, 2021
dc.rights.accesslevelopenAccessfi
dc.subject.ysoosittaisdifferentiaaliyhtälöt
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p12392
dc.rights.urlhttp://rightsstatements.org/page/InC/1.0/?language=en
dc.relation.doi10.2140/apde.2021.14.567


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

In Copyright
Except where otherwise noted, this item's license is described as In Copyright