C1,α regularity for the normalized p-Poisson problem
Attouchi, A., Parviainen, M., & Ruosteenoja, E. (2017). C1,α regularity for the normalized p-Poisson problem. Journal de Mathématiques Pures et Appliquées, 108(4), 553-591. https://doi.org/10.1016/j.matpur.2017.05.003
Julkaistu sarjassa
Journal de Mathématiques Pures et AppliquéesPäivämäärä
2017Tekijänoikeudet
© 2017 Elsevier Masson SAS. This is a final draft version of an article whose final and definitive form has been published by Elsevier. Published in this repository with the kind permission of the publisher.
We consider the normalized
p
-Poisson problem
−
Δ
N
p
u
=
f
in Ω
⊂
R
n
.
The normalized
p
-Laplacian Δ
N
p
u
:=
|
Du
|
2
−
p
Δ
p
u
is in non-divergence form and arises for example
from stochastic games. We prove
C
1
,α
loc
regularity with nearly optimal
α
for viscosity solutions of
this problem. In the case
f
∈
L
∞
∩
C
and
p>
1 we use methods both from viscosity and weak
theory, whereas in the case
f
∈
L
q
∩
C
,
q>
max(
n,
p
2
,
2), and
p>
2 we rely on the tools of nonlinear
potential theory
Julkaisija
Elsevier MassonISSN Hae Julkaisufoorumista
0021-7824Julkaisu tutkimustietojärjestelmässä
https://converis.jyu.fi/converis/portal/detail/Publication/26995615
Metadata
Näytä kaikki kuvailutiedotKokoelmat
Rahoittaja(t)
Suomen AkatemiaRahoitusohjelmat(t)
Akatemiatutkija, SALisätietoja rahoituksesta
MP is supported by the Academy of Finland (No. 260791) and ER is supported by the Vilho, Kalle and Yrjö Väisälä foundation.Samankaltainen aineisto
Näytetään aineistoja, joilla on samankaltainen nimeke tai asiasanat.
-
Remarks on regularity for p-Laplacian type equations in non-divergence form
Attouchi, Amal; Ruosteenoja, Eero (Academic Press, 2018)We study a singular or degenerate equation in non-divergence form modeled on the p-Laplacian, −|Du|γ(Δu+(p−2)Δ∞ Nu)=finΩ. We investigate local C1,α regularity of viscosity solutions in the full range γ>−1 and p>1, and ... -
Regularity properties of tug-of-war games and normalized equations
Ruosteenoja, Eero (University of Jyväskylä, 2017) -
C1,α-regularity for variational problems in the Heisenberg group
Mukherjee, Shirsho; Zhong, Xiao (Mathematical Sciences Publishers, 2021)We study the regularity of minima of scalar variational integrals of p-growth, 1<p><∞, in the Heisenberg group and prove the Hölder continuity of horizontal gradient of minima.</p> -
Local regularity estimates for general discrete dynamic programming equations
Arroyo, Ángel; Blanc, Pablo; Parviainen, Mikko (Elsevier, 2022)We obtain an analytic proof for asymptotic Hölder estimate and Harnack's inequality for solutions to a discrete dynamic programming equation. The results also generalize to functions satisfying Pucci-type inequalities for ... -
Calderón problem for the p-Laplace equation : First order derivative of conductivity on the boundary
Brander, Tommi (American Mathematical Society, 2016)We recover the gradient of a scalar conductivity defined on a smooth bounded open set in Rd from the Dirichlet to Neumann map arising from the p-Laplace equation. For any boundary point we recover the gradient using Dirichlet ...
Ellei toisin mainittu, julkisesti saatavilla olevia JYX-metatietoja (poislukien tiivistelmät) saa vapaasti uudelleenkäyttää CC0-lisenssillä.