Show simple item record

dc.contributor.authorAlexeeva, Tatyana A.
dc.contributor.authorKuznetsov, Nikolay V.
dc.contributor.authorMokaev, Timur N.
dc.date.accessioned2021-09-29T06:38:08Z
dc.date.available2021-09-29T06:38:08Z
dc.date.issued2021
dc.identifier.citationAlexeeva, T. A., Kuznetsov, N. V., & Mokaev, T. N. (2021). Study of irregular dynamics in an economic model : attractor localization and Lyapunov exponents. <i>Chaos, Solitons and Fractals</i>, <i>152</i>, Article 111365. <a href="https://doi.org/10.1016/j.chaos.2021.111365" target="_blank">https://doi.org/10.1016/j.chaos.2021.111365</a>
dc.identifier.otherCONVID_101211678
dc.identifier.urihttps://jyx.jyu.fi/handle/123456789/77952
dc.description.abstractCyclicality and instability inherent in the economy can manifest themselves in irregular fluctuations, including chaotic ones, which significantly reduces the accuracy of forecasting the dynamics of the economic system in the long run. We focus on an approach, associated with the identification of a deterministic endogenous mechanism of irregular fluctuations in the economy. Using of a mid-size firm model as an example, we demonstrate the use of effective analytical and numerical procedures for calculating the quantitative characteristics of its irregular limiting dynamics based on Lyapunov exponents, such as dimension and entropy. We use an analytical approach for localization of a global attractor and study limiting dynamics of the model. We estimate the Lyapunov exponents and get the exact formula for the Lyapunov dimension of the global attractor of this model analytically. With the help of delayed feedback control (DFC), the possibility of transition from irregular limiting dynamics to regular periodic dynamics is shown to solve the problem of reliable forecasting. At the same time, we demonstrate the complexity and ambiguity of applying numerical procedures to calculate the Lyapunov dimension along different trajectories of the global attractor, including unstable periodic orbits (UPOs).en
dc.format.mimetypeapplication/pdf
dc.language.isoeng
dc.publisherElsevier
dc.relation.ispartofseriesChaos, Solitons and Fractals
dc.rightsCC BY 4.0
dc.subject.otherLyapunov exponents
dc.subject.otherLyapunov dimension
dc.subject.otherUnstable periodic orbit
dc.subject.otherAbsorbing set
dc.subject.otherMid-size firm model
dc.titleStudy of irregular dynamics in an economic model : attractor localization and Lyapunov exponents
dc.typeresearch article
dc.identifier.urnURN:NBN:fi:jyu-202109295017
dc.contributor.laitosInformaatioteknologian tiedekuntafi
dc.contributor.laitosFaculty of Information Technologyen
dc.contributor.oppiaineTietotekniikkafi
dc.contributor.oppiaineLaskennallinen tiedefi
dc.contributor.oppiaineComputing, Information Technology and Mathematicsfi
dc.contributor.oppiaineMathematical Information Technologyen
dc.contributor.oppiaineComputational Scienceen
dc.contributor.oppiaineComputing, Information Technology and Mathematicsen
dc.type.urihttp://purl.org/eprint/type/JournalArticle
dc.type.coarhttp://purl.org/coar/resource_type/c_2df8fbb1
dc.description.reviewstatuspeerReviewed
dc.relation.issn0960-0779
dc.relation.volume152
dc.type.versionpublishedVersion
dc.rights.copyright© 2021 The Author(s). Published by Elsevier Ltd.
dc.rights.accesslevelopenAccessfi
dc.type.publicationarticle
dc.subject.ysokaaosteoria
dc.subject.ysotaloudelliset mallit
dc.subject.ysotaloudelliset ennusteet
dc.subject.ysodynaamiset systeemit
dc.subject.ysokausivaihtelut
dc.subject.ysoattraktorit
dc.format.contentfulltext
jyx.subject.urihttp://www.yso.fi/onto/yso/p6339
jyx.subject.urihttp://www.yso.fi/onto/yso/p15699
jyx.subject.urihttp://www.yso.fi/onto/yso/p16768
jyx.subject.urihttp://www.yso.fi/onto/yso/p38899
jyx.subject.urihttp://www.yso.fi/onto/yso/p18726
jyx.subject.urihttp://www.yso.fi/onto/yso/p38900
dc.rights.urlhttps://creativecommons.org/licenses/by/4.0/
dc.relation.doi10.1016/j.chaos.2021.111365
jyx.fundinginformationThis paper was prepared with the support by the Leading Scientific Schools of Russia: project NSh-2624.2020.1 (sections 3, 4). Authors from the St.Petersburg State University acknowledge support from St.Petersburg State University grant Pure ID 75207094 (section 1,2).
dc.type.okmA1


Files in this item

Thumbnail

This item appears in the following Collection(s)

Show simple item record

CC BY 4.0
Except where otherwise noted, this item's license is described as CC BY 4.0