dc.contributor.author | Alexeeva, Tatyana A. | |
dc.contributor.author | Kuznetsov, Nikolay V. | |
dc.contributor.author | Mokaev, Timur N. | |
dc.date.accessioned | 2021-09-29T06:38:08Z | |
dc.date.available | 2021-09-29T06:38:08Z | |
dc.date.issued | 2021 | |
dc.identifier.citation | Alexeeva, T. A., Kuznetsov, N. V., & Mokaev, T. N. (2021). Study of irregular dynamics in an economic model : attractor localization and Lyapunov exponents. <i>Chaos, Solitons and Fractals</i>, <i>152</i>, Article 111365. <a href="https://doi.org/10.1016/j.chaos.2021.111365" target="_blank">https://doi.org/10.1016/j.chaos.2021.111365</a> | |
dc.identifier.other | CONVID_101211678 | |
dc.identifier.uri | https://jyx.jyu.fi/handle/123456789/77952 | |
dc.description.abstract | Cyclicality and instability inherent in the economy can manifest themselves in irregular fluctuations, including chaotic ones, which significantly reduces the accuracy of forecasting the dynamics of the economic system in the long run. We focus on an approach, associated with the identification of a deterministic endogenous mechanism of irregular fluctuations in the economy. Using of a mid-size firm model as an example, we demonstrate the use of effective analytical and numerical procedures for calculating the quantitative characteristics of its irregular limiting dynamics based on Lyapunov exponents, such as dimension and entropy. We use an analytical approach for localization of a global attractor and study limiting dynamics of the model. We estimate the Lyapunov exponents and get the exact formula for the Lyapunov dimension of the global attractor of this model analytically. With the help of delayed feedback control (DFC), the possibility of transition from irregular limiting dynamics to regular periodic dynamics is shown to solve the problem of reliable forecasting. At the same time, we demonstrate the complexity and ambiguity of applying numerical procedures to calculate the Lyapunov dimension along different trajectories of the global attractor, including unstable periodic orbits (UPOs). | en |
dc.format.mimetype | application/pdf | |
dc.language.iso | eng | |
dc.publisher | Elsevier | |
dc.relation.ispartofseries | Chaos, Solitons and Fractals | |
dc.rights | CC BY 4.0 | |
dc.subject.other | Lyapunov exponents | |
dc.subject.other | Lyapunov dimension | |
dc.subject.other | Unstable periodic orbit | |
dc.subject.other | Absorbing set | |
dc.subject.other | Mid-size firm model | |
dc.title | Study of irregular dynamics in an economic model : attractor localization and Lyapunov exponents | |
dc.type | research article | |
dc.identifier.urn | URN:NBN:fi:jyu-202109295017 | |
dc.contributor.laitos | Informaatioteknologian tiedekunta | fi |
dc.contributor.laitos | Faculty of Information Technology | en |
dc.contributor.oppiaine | Tietotekniikka | fi |
dc.contributor.oppiaine | Laskennallinen tiede | fi |
dc.contributor.oppiaine | Computing, Information Technology and Mathematics | fi |
dc.contributor.oppiaine | Mathematical Information Technology | en |
dc.contributor.oppiaine | Computational Science | en |
dc.contributor.oppiaine | Computing, Information Technology and Mathematics | en |
dc.type.uri | http://purl.org/eprint/type/JournalArticle | |
dc.type.coar | http://purl.org/coar/resource_type/c_2df8fbb1 | |
dc.description.reviewstatus | peerReviewed | |
dc.relation.issn | 0960-0779 | |
dc.relation.volume | 152 | |
dc.type.version | publishedVersion | |
dc.rights.copyright | © 2021 The Author(s). Published by Elsevier Ltd. | |
dc.rights.accesslevel | openAccess | fi |
dc.type.publication | article | |
dc.subject.yso | kaaosteoria | |
dc.subject.yso | taloudelliset mallit | |
dc.subject.yso | taloudelliset ennusteet | |
dc.subject.yso | dynaamiset systeemit | |
dc.subject.yso | kausivaihtelut | |
dc.subject.yso | attraktorit | |
dc.format.content | fulltext | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p6339 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p15699 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p16768 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38899 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p18726 | |
jyx.subject.uri | http://www.yso.fi/onto/yso/p38900 | |
dc.rights.url | https://creativecommons.org/licenses/by/4.0/ | |
dc.relation.doi | 10.1016/j.chaos.2021.111365 | |
jyx.fundinginformation | This paper was prepared with the support by the Leading Scientific Schools of Russia: project NSh-2624.2020.1 (sections 3, 4). Authors from the St.Petersburg State University acknowledge support from St.Petersburg State University grant Pure ID 75207094 (section 1,2). | |
dc.type.okm | A1 | |