Space of signatures as inverse limits of Carnot groups
Le Donne, E., & Züst, R. (2021). Space of signatures as inverse limits of Carnot groups. ESAIM : Control, Optimisation and Calculus of Variations, 27, Article 37. https://doi.org/10.1051/cocv/2021040
Date
2021Discipline
Geometrinen analyysi ja matemaattinen fysiikkaMatematiikkaAnalyysin ja dynamiikan tutkimuksen huippuyksikköGeometric Analysis and Mathematical PhysicsMathematicsAnalysis and Dynamics Research (Centre of Excellence)Copyright
© EDP Sciences, SMAI 2021
We formalize the notion of limit of an inverse system of metric spaces with 1-Lipschitz projections having unbounded fibers. The construction is applied to the sequence of free Carnot groups of fixed rank n and increasing step. In this case, the limit space is in correspondence with the space of signatures of rectifiable paths in ℝn, as introduced by Chen. Hambly-Lyons’s result on the uniqueness of signature implies that this space is a geodesic metric tree. As a particular consequence we deduce that every path in ℝn can be approximated by projections of some geodesics in some Carnot group of rank n, giving an evidence that the complexity of sub-Riemannian geodesics increases with the step.
Publisher
EDP SciencesISSN Search the Publication Forum
1292-8119Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/89793530
Metadata
Show full item recordCollections
Related funder(s)
Research Council of Finland; European CommissionFunding program(s)
Academy Research Fellow, AoF; ERC Starting Grant; Academy Project, AoF
The content of the publication reflects only the author’s view. The funder is not responsible for any use that may be made of the information it contains.
Additional information about funding
E.L.D. was partially supported by the Academy of Finland (grant 288501 ‘Geometry of subRiemannian groups’ and by grant 322898 ‘Sub-Riemannian Geometry via Metric-geometry and Lie-group Theory’) and by the European Research Council (ERC Starting Grant 713998 GeoMeG ‘Geometry of Metric Groups’).License
Related items
Showing items with similar title or keywords.
-
A Primer on Carnot Groups: Homogenous Groups, Carnot-Carathéodory Spaces, and Regularity of Their Isometries
Le Donne, Enrico (De Gruyter Open, 2017)Carnot groups are distinguished spaces that are rich of structure: they are those Lie groups equipped with a path distance that is invariant by left-translations of the group and admit automorphisms that are dilations with ... -
Semigenerated Carnot algebras and applications to sub-Riemannian perimeter
Le Donne, Enrico; Moisala, Terhi (Springer, 2021)This paper contributes to the study of sets of finite intrinsic perimeter in Carnot groups. Our intent is to characterize in which groups the only sets with constant intrinsic normal are the vertical half-spaces. Our ... -
Topics in the geometry of non-Riemannian lie groups
Nicolussi Golo, Sebastiano (University of Jyväskylä, 2017) -
Lipschitz Carnot-Carathéodory Structures and their Limits
Antonelli, Gioacchino; Le Donne, Enrico; Nicolussi Golo, Sebastiano (Springer Science and Business Media LLC, 2023)In this paper we discuss the convergence of distances associated to converging structures of Lipschitz vector fields and continuously varying norms on a smooth manifold. We prove that, under a mild controllability assumption ... -
Area of intrinsic graphs and coarea formula in Carnot groups
Julia, Antoine; Nicolussi Golo, Sebastiano; Vittone, Davide (Springer Science and Business Media LLC, 2022)We consider submanifolds of sub-Riemannian Carnot groups with intrinsic C1 regularity (C1H). Our first main result is an area formula for C1H intrinsic graphs; as an application, we deduce density properties for Hausdorff ...