Non-linear analysis of a modified QPSK Costas loop
Kuznetsov, N. V., Blagov, M. V., Kudryashova, E. V., Ladvanszky, J., Yuldashev, M. V., & Yuldashev, R. V. (2019). Non-linear analysis of a modified QPSK Costas loop. In L. Jadachowski (Ed.), 11th IFAC Symposium on Nonlinear Control Systems NOLCOS 2019 Vienna, Austria, 4-6 September 2019 (52, pp. 31-35). IFAC; Elsevier. IFAC-PapersOnLine. https://doi.org/10.1016/j.ifacol.2019.11.751
Published in
IFAC-PapersOnLineAuthors
Editors
Date
2019Copyright
© 2019 IFAC
A Costas loop is one of the classical phase-locked loop based circuits, which demodulates data and recovers carrier from the input signal. The Costas loop is essentially a nonlinear control system and its nonlinear analysis is a challenging task. In this article for a modified QPSK Costas loop we analyze the hold-in, pull-in and lock-in ranges. New procedure for estimation of the lock-in range is considered and compared with previously known approach.
Publisher
IFAC; ElsevierConference
IFAC Symposium on Nonlinear Control SystemsIs part of publication
11th IFAC Symposium on Nonlinear Control Systems NOLCOS 2019 Vienna, Austria, 4-6 September 2019ISSN Search the Publication Forum
2405-8971Keywords
Publication in research information system
https://converis.jyu.fi/converis/portal/detail/Publication/33904265
Metadata
Show full item recordCollections
Additional information about funding
We acknowledge support from Russian Science Foundation project 19-41-02002License
Related items
Showing items with similar title or keywords.
-
Hold-in, Pull-in and Lock-in Ranges for Phase-locked Loop with Tangential Characteristic of the Phase Detector
Blagov, M. V.; Kuznetsova, O. A.; Kudryashov, E. V.; Kuznetsov, Nikolay; Mokaev, T. N.; Mokaev, R. N.; Yuldashev, M. V.; Yuldashev, R. V. (Elsevier, 2019)In the present paper the phase-locked loop (PLL), an electric circuit widely used in telecommunications and computer architectures is considered. A new modification of the PLL with tangential phase detector characteristic ... -
Harmonic balance analysis of pull-in range and oscillatory behavior of third-order type 2 analog PLLs
Kuznetsov, N.V.; Lobachev, M.Y.; Yuldashev, M.V.; Yuldashev, R.V.; Kolumbán, G. (Elsevier, 2020)The most important design parameters of each phase-locked loop (PLL) are the local and global stability properties, and the pull-in range. To extend the pull-in range, engineers often use type 2 PLLs. However, the engineering ... -
Phase-locked loops with active PI filter : the lock-in range computation
Aleksandrov, Konstantin (University of Jyväskylä, 2016) -
Hidden attractors and multistability in a modified Chua’s circuit
Wang, Ning; Zhang, Guoshan; Kuznetsov, Nikolay; Bao, Han (Elsevier BV, 2021)The first hidden chaotic attractor was discovered in a dimensionless piecewise-linear Chua’s system with a special Chua’s diode. But designing such physical Chua’s circuit is a challenging task due to the distinct slopes ... -
Nonlinear Analysis of Charge-Pump Phase-Locked Loop : The Hold-In and Pull-In Ranges
Kuznetsov, Nikolay; Matveev, Alexey; Yuldashev, Marat; Yuldashev, Renat (Institute of Electrical and Electronics Engineers (IEEE), 2021)In this paper a fairly complete mathematical model of CP-PLL, which reliable enough to serve as a tool for credible analysis of dynamical properties of these circuits, is studied. We refine relevant mathematical definitions ...